Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; 9(21): e2200948, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35596613

ABSTRACT

Topological materials have significant potential for spintronic applications owing to their superior spin-charge interconversion. Here, the spin-to-charge conversion (SCC) characteristics of epitaxial Bi1- x Sbx films is investigated across the topological phase transition by spintronic terahertz (THz) spectroscopy. An unexpected, intense spintronic THz emission is observed in the topologically nontrivial semimetal Bi1- x Sbx films, significantly greater than that of Pt and Bi2 Se3 , which indicates the potential of Bi1- x Sbx for spintronic applications. More importantly, the topological surface state (TSS) is observed to significantly contribute to SCC, despite the coexistence of the bulk state, which is possible via a unique ultrafast SCC process, considering the decay process of the spin-polarized hot electrons. This means that topological material-based spintronic devices should be fabricated in a manner that fully utilizes the TSS, not the bulk state, to maximize their performance. The results not only provide a clue for identifying the source of the giant spin Hall angle of Bi1- x Sbx , but also expand the application potential of topological materials by indicating that the optically induced spin current provides a unique method for focused-spin injection into the TSS.

2.
Stem Cells Dev ; 30(21): 1082-1091, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34514853

ABSTRACT

Mucin 1 (MUC1) is a transmembrane glycoprotein overexpressed in several cancer cells in which it regulates cell surface properties, tumor invasion, and cell death. Recently, we reported that MUC1-C, the C-terminal subunit of MUC1, is involved in the growth of mouse embryonic stem (ES) cells. However, the functional significance of MUC1-C in human ES cells remains unclear. In this study, we investigated the expression and function of MUC1-C in human ES cells. Based on reverse transcription-polymerase chain reaction, western blotting, and confocal microscopy following immunostaining, undifferentiated human ES cells expressed MUC1-C and the expression level decreased during differentiation. Inhibition of MUC1-C, by the peptide inhibitor GO201 that targets the cytoplasmic domain of MUC1-C (MUC1-CD), reduced cell proliferation and OCT4 protein expression, and promoted cell death. Moreover, the inhibition of MUC1-C increased the intracellular reactive oxygen species (ROS) levels and downregulated expression of glycolysis-related enzymes. These findings indicate that expression and function of MUC1-C are required for stem cell properties involved in cell proliferation, maintenance of pluripotency and optimal ROS levels, and a high glycolytic flux in human ES cells. In addition, forced overexpression of MUC1-CD increased the efficiency of reprogramming from fibroblast cells to induced pluripotent stem cells, suggesting that MUC1-C expression can contribute to the reprogramming process.


Subject(s)
Human Embryonic Stem Cells , Induced Pluripotent Stem Cells , Animals , Cell Differentiation/genetics , Cellular Reprogramming , Human Embryonic Stem Cells/metabolism , Humans , Mice , Mucin-1/chemistry , Mucin-1/genetics , Mucin-1/metabolism
3.
ACS Appl Mater Interfaces ; 13(19): 23153-23160, 2021 May 19.
Article in English | MEDLINE | ID: mdl-33945256

ABSTRACT

Owing to their remarkable spin-charge conversion (SCC) efficiency, topological insulators (TIs) are the most attractive candidates for spin-orbit torque generators. The simple method of enhancing SCC efficiency is to reduce the thickness of TI films to minimize the trivial bulk contribution. However, when the thickness reaches the ultrathin regime, the SCC efficiency decreases owing to intersurface hybridization. To overcome these contrary effects, we induced dehybridization of the ultrathin TI film by breaking the inversion symmetry between surfaces. For the TI film grown on an oxygen-deficient transition-metal oxide, the unbonded transition-metal d-orbitals affected only the bottom surface, resulting in asymmetric surface band structures. Spintronic terahertz emission spectroscopy, an emerging tool for investigating the SCC characteristics, revealed that the resulting SCC efficiency in symmetry-broken ultrathin Bi2Se3 was enhanced by up to ∼2.4 times.

4.
ACS Appl Mater Interfaces ; 12(23): 26649-26658, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32397708

ABSTRACT

Topological insulators (TIs) have become popular in the field of optoelectronic devices because of their broadband and high-sensitivity properties, which are attributed to the narrow band gap of the bulk state and high mobility of the Dirac surface state. Although perfectly grown TIs are known to exhibit strong stability against oxidation, in most cases, the existence of vacancy defects in TIs reacts to air and the characteristics of TIs is affected by oxidation. Therefore, changes in the band structure and electrical characteristics by oxidation should be considered. A significant change occurs because of the oxidation; however, the dependence of the photoresponse of TIs on oxidation has not been studied in detail. In this study, the photoresponsivity of oxidized Bi2Se3 films is enhanced, rather than degraded, after oxidation in air for 24 h, resulting in a maximum responsivity of 140 mA W-1. This responsivity is substantially higher than previously reported values for Bi2Se3. Furthermore, a change in the photoresponse time of Bi2Se3 due to air exposure is systematically observed. Based on variations in the Fermi level and work function, using photoelectron spectroscopy, it is confirmed that the responsivity is improved from the junction effect of the Bi-based surface oxidized layer.

5.
ACS Appl Mater Interfaces ; 12(10): 12215-12226, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32073823

ABSTRACT

The direct control of topological surface states in topological insulators is an important prerequisite for the application of these materials. Conventional attempts to utilize magnetic doping, mechanical tuning, structural engineering, external bias, and external magnetic fields suffer from a lack of reversible switching and have limited tunability. We demonstrate the direct control of topological phases in a bismuth selenide (Bi2Se3) topological insulator in 3 nm molecular beam epitaxy-grown films through the hybridization of the topological surface states with the hafnium (Hf) d-orbitals in the topmost layer of an underlying oxygen-deficient hafnium oxide (HfO2) substrate. The higher angular momentum of the d-orbitals of Hf is hybridized strongly by topological insulators, thereby enhancing the spin-orbit coupling and perturbing the topological surface states asymmetry in Bi2Se3. As the oxygen defect is cured or generated reversibly by external electric fields, our research facilitates the complete electrical control of the topological phases of topological insulators by controlling the defect density in the adjacent transition metal oxide. In addition, this mechanism can be applied in other related topological materials such as Weyl and Dirac semimetals in future endeavors to facilitate practical applications in unit-element devices for quantum computing and quantum communication.

6.
ACS Nano ; 13(4): 3931-3939, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-30951288

ABSTRACT

Topological insulator (TI), a band insulator with topologically protected edge states, is one of the most interesting materials in the field of condensed matter. Bismuth selenide (Bi2Se3) is the most spotlighted three-dimensional TI material; it has a Dirac cone at each top and bottom surface and a relatively wide bandgap. For application, suppression of the bulk effect is crucial, but in ultrathin TI materials, with thicknesses less than 3 QL, the finite size effect works on the linear dispersion of the surface states, so that the surface band has a finite bandgap because of the hybridization between the top and bottom surface states and Rashba splitting, resulting from the structure inversion asymmetry. Here, we studied the gapless top surface Dirac state of strained 3 QL Bi2Se3/graphene heterostructures. A strain caused by the graphene layer reduces the bandgap of surface states, and the band bending resulting from the charge transfer at the Bi2Se3-graphene interface induces localization of surface states to each top and bottom layer to suppress the overlap of the two surface states. In addition, we verified the independent transport channel of the top surface Dirac state in Bi2Se3/graphene heterostructures by measuring the magneto-conductance. Our findings suggest that the strain and the proximity effect in TI/non-TI heterostructures may be feasible ways to engineer the topological surface states beyond the physical and topological thickness limit.

7.
Nanoscale ; 10(48): 22896-22907, 2018 Dec 13.
Article in English | MEDLINE | ID: mdl-30488924

ABSTRACT

We evaluated the change in the chemical structure between dielectrics (AlOx and HfOx) grown by atomic layer deposition (ALD) and oxidized black phosphorus (BP), as a function of air exposure time. Chemical and structural analyses of the oxidized phosphorus species (PxOy) were performed using atomic force microscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, first-principles density functional theory calculations, and the electrical characteristics of field-effect transistors (FETs). Based on the combined experiments and theoretical investigations, we clearly show that oxidized phosphorus species (PxOy, until exposed for 24 h) are significantly decreased (self-reduction) during the ALD of AlOx. In particular, the field effect characteristics of a FET device based on Al2O3/AlOx/oxidized BP improved significantly with enhanced electrical properties, a mobility of ∼253 cm2 V-1 s-1 and an on-off ratio of ∼105, compared to those of HfO2/HfOx/oxidized BP with a mobility of ∼97 cm2 V-1 s-1 and an on-off ratio of ∼103-104. These distinct differences result from a significantly decreased interface trap density (Dit ∼ 1011 cm-2 eV-1) and subthreshold gate swing (SS ∼ 270 mV dec-1) in the BP device caused by the formation of stable energy states at the AlOx/oxidized BP interface, even with BP oxidized by air exposure.

8.
Redox Biol ; 13: 470-476, 2017 10.
Article in English | MEDLINE | ID: mdl-28715732

ABSTRACT

Heat shock protein 90 (HSP90) is a molecular chaperone that supports the stability of client proteins. The proteasome is one of the targets for cancer therapy, and studies are underway to use proteasome inhibitors as anti-cancer drugs. In this study, we found that HSP90 was cleaved to a 55kDa protein after treatment with proteasome inhibitors including MG132 in leukemia cells but was not cleaved in other tissue-derived cells. HSP90 has two major isoforms (HSP90α and HSP90ß), and both were cleaved by MG132 treatment. MG132 treatment also induced a decrease in HSP90 client proteins. MG132 treatment generated ROS, and the cleavage of HSP90 was blocked by a ROS scavenger, N-acetylcysteine (NAC). MG132 activated several caspases, and the activation was reduced by pretreatment with NAC. Based on an inhibitor study, the cleavage of HSP90 induced by MG132 was dependent on caspase 10 activation. Furthermore, active recombinant caspase 10 induced HSP90 cleavage in vitro. MG132 upregulated VDUP-1 expression and reduced the GSH levels implying that the regulation of redox-related proteins is involved. Taken all together, our results suggest that the cleavage of HSP90 by MG132 treatment is mediated by ROS generation and caspase 10 activation. HSP90 cleavage may provide an additional mechanism involved in the anti-cancer effects of proteasome inhibitors.


Subject(s)
Caspase 10/metabolism , HSP90 Heat-Shock Proteins/metabolism , Leukemia/metabolism , Protease Inhibitors/pharmacology , Reactive Oxygen Species/metabolism , Acetylcysteine/pharmacology , Carrier Proteins/genetics , Carrier Proteins/metabolism , Caspase 10/genetics , Free Radical Scavengers/pharmacology , Glutathione/metabolism , HCT116 Cells , HSP90 Heat-Shock Proteins/genetics , HT29 Cells , Humans , Leupeptins/pharmacology , MCF-7 Cells , Proteolysis/drug effects
9.
Nanoscale ; 8(45): 19025-19035, 2016 Dec 07.
Article in English | MEDLINE | ID: mdl-27812585

ABSTRACT

Electrons and phonons in chalcogenide-based materials are important factors in the performance of optical data-storage media and thermoelectric devices. However, the fundamental kinetics of carriers in chalcogenide materials remains controversial, and active debate continues over the mechanism responsible for carrier relaxation. In this study, we used optical-pump terahertz-probe spectroscopy, which permits the relationship between structural phase transition and optical property transitions to be examined, to investigate the ultrafast carrier dynamics in a multilayered [Sb(3 Å)/Te(9 Å)]n thin film during the transition from the disordered to crystalline phase. Using terahertz time-domain spectroscopy and a contact-free optical technique, we demonstrated that the optical conductance and carrier concentration vary as functions of annealing temperature. Moreover, we observed that the topological surface state (TSS) affects the enhancement of the carrier lifetime, which is closely related to the degree of spin-orbit coupling (SOC). The combination of the optical technique and proposed carrier relaxation mechanism provides a powerful tool for monitoring TSS and SOC. Consequently, it was determined that the response of the disordered phase is dominated by an electron-phonon coupling effect, while that of the crystalline structure is controlled by a Dirac surface state and SOC effects. These results are important for understanding the fundamental physics of phase change materials and for optimizing and designing materials with better performance in optoelectronic devices.

10.
Oncotarget ; 7(48): 79170-79186, 2016 Nov 29.
Article in English | MEDLINE | ID: mdl-27816969

ABSTRACT

Transmembrane 4 superfamily member 5 protein (TM4SF5) is a potential therapeutic target for hepatocellular carcinoma (HCC) and colon cancer. In a previous study, we demonstrated the prophylactic and therapeutic effects of a TM4SF5-specific peptide vaccine and monoclonal antibody in HCC and colon cancer in a mouse model. Here, we designed a cyclic peptide targeting TM4SF5. Cyclic peptide-specific antibodies were produced in mice after immunization with a complex of the peptide, CpG-DNA, and liposomes. Intravenous injection of the CT-26 mouse colon cancer cell line into mice induced tumors in the lung. Immunization with the peptide vaccine improved the survival rate and reduced the growth of lung tumors. We established a monoclonal antibody specific to the cyclic TM4SF5-based peptide and humanized the antibody sequence by complementarity determining region-grafting. The humanized antibody was reactive to the cyclic peptide and TM4SF5 protein. Treatment of CT-26 cells with the humanized antibody reduced cell motility in vitro. Furthermore, direct injection of the humanized anti-TM4SF5 antibody in vivo reduced growth of lung tumors in mouse metastasis model. Therefore, we conclude that the immunization with the cyclic peptide vaccine and injection of the TM4SF5-specifc humanized antibody have an anti-metastatic effect against colon cancer in mice. Importantly, the humanized antibody may serve as a starting platf.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Colonic Neoplasms/drug therapy , Liver Neoplasms/drug therapy , Liver Neoplasms/secondary , Membrane Proteins/metabolism , Peptides, Cyclic/administration & dosage , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Colonic Neoplasms/metabolism , Gene Expression Regulation, Neoplastic/drug effects , HCT116 Cells , Humans , Injections, Intravenous , Liver Neoplasms/metabolism , Membrane Proteins/immunology , Mice , Peptides, Cyclic/pharmacology , Treatment Outcome , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/pharmacology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...