Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 3(12): 18398-18410, 2018 Dec 31.
Article in English | MEDLINE | ID: mdl-31458412

ABSTRACT

We report for the first time that alkali carbonates (Li2CO3, K2CO3, and Rb2CO3) based on a low-temperature solution process can be used as interfacial modifiers for SnO2 as robust electron-transport layers (ETL) for inverted organic solar cells (iOSCs). The room-temperature photoluminescence, the electron-only devices, and the impedance studies altogether suggested the interfacial properties of the alkali carbonates-modified SnO2 ETLs, which were much better than those based on the SnO2 only, provided efficient charge transport, and reduced the charge recombination rates for iOSCs. The iOSCs using the polymer donor poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl] and the fullerene acceptor phenyl-C70-butyric acid methyl ester as the active layer showed the average power-conversion efficiencies (PCEs) based on ten devices of 6.70, 6.85, and 7.35% with Li2CO3-, K2CO3-, and Rb2CO3-modified SnO2 as ETLs, respectively; these are more than 22, 24, and 33% higher than those based on the SnO2 only (5.49%). Moreover, these iOSC devices exhibited long-term stabilities, with over 90% PCEs remaining after the devices were stored in ambient air for 6 weeks without encapsulations. We believe that alkali carbonates-modified SnO2 approaches are an effective way to achieve stable and highly efficient iOSCs and might also be suitable for other optoelectronic devices where an ETL is needed, such as perovskite solar cells or organic light-emitting diodes.

2.
Opt Express ; 23(7): A211-8, 2015 Apr 06.
Article in English | MEDLINE | ID: mdl-25968787

ABSTRACT

Localized surface plasmon mediated polymer solar cells (PSCs) were fabricated using the Ag/SiO(2) nanoparticles (NPs). The inverted PSC structure without poly (3,4-ethylenedioxythiophene) polystyrene sulfonate ( PEDOT: PSS) was prepared due to the efficient insertion of Ag/SiO(2) NPs in the vicinity of active layer, which led to an enhancement in photo-conversion efficiency (PCE). This enhancement mainly comes from the light scattering by the SiO(2) shell and the localized surface plasmon effect by the Ag core, but we also considered the structural issues such as the NP distribution, the swelling of the active layer and of the metal electrode.

3.
J Nanosci Nanotechnol ; 14(11): 8561-6, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25958563

ABSTRACT

Polymer solar cells (PSCs) have attracted increasing attention in recent years. The rapid progress and mounting interest suggest the feasibility of PSC commercialization. However, critical issues such as stability and the weak nature of their interfaces posses quite a challenge. In the context of improving stability, PSCs with inverted geometry consising of inorganic oxide layer acting as an n-buffer offer quite the panacea. Zinc oxide (ZnO) is one of the most preferred semiconducting wide band gap oxides as an efficient cathode layer that effectively extracts and transports photoelectrons from the acceptor to the conducting indium-doped tin oxide (ITO) due to its high conductivity and transparency. However, the existence of a back charge transfer from metal oxides to electron-donating conjugated polymer and poor contact with the bulk heterojunction (BHJ) active layer results in serious interfacial recombination and leads to relatively low photovoltaic performance. One approach to improving the performance and charge selectivity of these types of inverted devices consists of modifying the interface between the inorganic metal oxide (e.g., ZnO) and organic active layer using a sub-monolayer of interfacial materials (e.g., functional dyes). In this work, we demonstrate that the photovoltaic parameters of inverted solar cells comprising a thin overlayer of functional dyes over ZnO nanoparticle as an n-buffer layer are highly influenced by the anchoring groups they possess. While an inverted PSC containing an n-buffer of only ZnO exhibited an overall power conversion efficiency (PCE) of 2.87%, the devices with an interlayer of dyes containing functional cyano-carboxylic, cyano-cyano, and carboxylic groups exhibited PCE of 3.52%, 3.39%, and 3.21%, respectively, due to increased forward charge collection resulting from enhanced electronic coupling between the ZnO and BHJ active layers.

4.
ACS Appl Mater Interfaces ; 6(2): 803-10, 2014 Jan 22.
Article in English | MEDLINE | ID: mdl-24351036

ABSTRACT

Hybrid solar cells (HSCs) incorporating both organic and inorganic materials typically have significant interfacial issues which can significantly limit the device efficiency by allowing charge recombination, macroscopic phase separation, and nonideal contact. All these issues can be mitigated by applying carefully designed interfacial modifiers (IMs). In an attempt to further understand the function of these IMs, we investigated two IMs in two different HSCs structures: an inverted bilayer HSC of ZnO:poly(3-hexylthiophene) (P3HT) and an inverted bulk heterojunction (BHJ) solar cell of ZnO/P3HT:[6,6]-phenyl C61-butyric acid methyl ester (PCBM). In the former device configuration, ZnO serves as the n-type semiconductor, while in the latter device configuration, it functions as an electron transport layer (ETL)/hole blocking layer (HBL). In the ZnO:P3HT bilayer device, after the interfacial modification, a power conversion efficiency (PCE) of 0.42% with improved Voc and FF and a significantly increased Jsc was obtained. In the ZnO/P3HT:PCBM based BHJ device, including IMs also improved the PCE to 4.69% with an increase in Voc and FF. Our work clearly demonstrates that IMs help to reduce both the charge recombination and leakage current by minimizing the number of defect sites and traps and to increase the compatibility of hydrophilic ZnO with the organic layers. Furthermore, the major role of IMs depends on the function of ZnO in different device configurations, either as n-type semiconductor in bilayer devices or as ETL/HBL in BHJ devices. We conclude by offering insights for designing ideal IMs in future efforts, in order to achieve high-efficiency in both ZnO:polymer bilayer structure and ZnO/polymer:PCBM BHJ devices.

5.
J Nanosci Nanotechnol ; 13(12): 7975-81, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24266175

ABSTRACT

Heterojunction (HJ) structure has the advantages of high charge collection and transport efficiency, but it also has the disadvantage of low charge collection, due to limited p-n interfaces, compared with bulkheterojunction (BHJ) structure. In order to overcome this disadvantage of HJ, we fabricated HJ solar cells with large p-n interfaces, based on poly(3-hexylthiophene) (P3HT)/[6,6]-phenyl-C61-butylric acid methyl ester (PC61 BM), treated by a solvent annealing (SA) process under atmospheric condition, which is a simple and low-cost process. The SA process induced a P3HT-PC61 BM interdiffusion layer between the P3HT and PC61 BM layers, by a diffusion of each component, and resulted in an increase of p-n interface areas. These results were confirmed by X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectroscopy (ToF-SIMS). The performance of a HJ device fabricated with a SA process achieved a 30% higher power conversion efficiency (PCE) value (approximately 3.3%), than that without a SA process. Interestingly, the HJ SA device showed higher long-term stability, than that without a SA process.

SELECTION OF CITATIONS
SEARCH DETAIL
...