Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(22)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38005465

ABSTRACT

This paper proposes an energy-efficient multi-level sleep mode control for periodic transmission (MSC-PUT) in private fifth-generation (5G) networks. In general, private 5G networks meet IIoT requirements but face rising energy consumption due to dense base station (BS) deployment, particularly impacting operating expenses (OPEX). An approach of BS sleep mode has been studied to reduce energy consumption, but there has been insufficient consideration for the periodic uplink transmission of industrial Internet of Things (IIoT) devices. Additionally, 5G New Reno's synchronization signal interval limits the effectiveness of the deepest sleep mode in reducing BS energy consumption. By addressing this issue, the aim of this paper is to propose an energy-efficient multi-level sleep mode control for periodic uplink transmission to improve the energy efficiency of BSs. In advance, we develop an energy-efficient model that considers the trade-off between throughput impairment caused by increased latency and energy saving by sleep mode operation for IIoT's periodic uplink transmission. Then, we propose an approach based on proximal policy optimization (PPO) to determine the deep sleep mode of BSs, considering throughput impairment and energy efficiency. Our simulation results verify the proposed MSC-PUT algorithm's effectiveness in terms of throughput, energy saving, and energy efficiency. Specifically, we verify that our proposed MSC-PUT enhances energy efficiency by nearly 27.5% when compared to conventional multi-level sleep operation and consumes less energy at 75.21% of the energy consumed by the conventional method while incurring a throughput impairment of nearly 4.2%. Numerical results show that the proposed algorithm can significantly reduce the energy consumption of BSs accounting for periodic uplink transmission of IIoT devices.

2.
Mol Nutr Food Res ; 67(20): e2200768, 2023 10.
Article in English | MEDLINE | ID: mdl-37658489

ABSTRACT

SCOPE: Cinnamon is a commonly used spice and herb that is rich in polyphenols. Due to the limited bioavailability of oral polyphenols, it remains unclear to which extent they can reach cells and exert a biological effect. This study aims to investigate the impact of bioavailable cinnamon polyphenols on lipopolysaccharide (LPS)-stimulated macrophages. METHODS AND RESULTS: A polyphenol fraction is prepared from cinnamon (Cinnamomi ramulus) (CRPF) by boiling cinnamon in water and adsorbing the extract onto a hydrophobic resin. Mice are orally administered CRPF for 7 days and then subjected to three independent experiments: endotoxemia, serum collection, and macrophage isolation. Upon intraperitoneal lipopolysaccharide challenge, CRPF decreases serum levels of inflammatory cytokines, involving suppression of liver and spleen macrophages. When normal macrophages are cultured in serum obtained from CRPF-treated mice, they exhibit an anti-inflammatory phenotype. However, macrophages from CRPF-treated mice show an increased production of inflammatory cytokines when cultured in fetal bovine serum and stimulated with LPS. CONCLUSION: The study provides evidence for the presence of bioavailable cinnamon polyphenols with anti-inflammatory properties and macrophage activation. These findings suggest that cinnamon polyphenols have the potential to modulate macrophage function, which could have implications for reducing inflammation and improving immune function.


Subject(s)
Lipopolysaccharides , Polyphenols , Mice , Animals , Polyphenols/pharmacology , Lipopolysaccharides/toxicity , Cinnamomum zeylanicum/chemistry , Macrophage Activation , Cytokines/genetics , Anti-Inflammatory Agents/pharmacology , Plant Extracts/pharmacology
3.
Life (Basel) ; 12(12)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36556387

ABSTRACT

Harmine is a beta-carboline alkaloid present in various plants, including in the seeds of Peganum harmala L. This study aimed to investigate the anti-inflammatory activity and mechanism of harmine using macrophages stimulated with various toll-like receptor (TLR) agonists and a model of endotoxemia. The expression of inflammatory mediators induced by ligands of TLRs 2, 3, 4, and 9 were examined in thioglycollate-elicited peritoneal macrophages isolated from BALB/c and C57BL/6 mouse strains. Further, the activation of NF-κB, MAPK, AP-1, and STAT1 was explored using lipopolysaccharide (LPS) and polyinosinic:polycytidylic acid (poly(I:C)). Finally, the liver inflammatory response during endotoxemia was examined. Harmine inhibited inducible nitric oxide synthase, cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-12, and other markers induced by various TLR agonists. The inhibition of NF-κB activity by harmine occurred via the modulation of p65 phosphorylation, independent of IκBα degradation. The inhibition of AP-1 activity by harmine was associated with the modulation of JNK. Harmine inhibited the LPS-induced serine and tyrosine phosphorylation of STAT1, but only affected serine phosphorylation by poly(I:C) treatment. In vivo, harmine inhibited iNOS and COX-2 expression during endotoxemia. Collectively, the results show that harmine can be effective against infectious inflammation through modulation of NF-κB, JNK, and STAT1.

4.
Int J Biol Macromol ; 211: 47-56, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35490767

ABSTRACT

Euglena gracilis (EUG) is a food supplement rich in beta-glucans, which are stored in the form of granules called paramylon. We determined whether EUG improved chemotherapy-induced leukocytopenia and dysbiosis. Mice were orally administered EUG prior to gemcitabine treatment. Analyses of the blood cell count, leukocyte population in the spleen, granulocyte/macrophage-colony-stimulating factor (GM-CSF) production by splenocytes, and fecal microbiome were conducted. The recovery of total leukocytes, neutrophils, and monocytes was accelerated after a single gemcitabine treatment. A more rapid lymphocyte recovery rate was observed after four gemcitabine treatments. No difference was observed in the percentage of T, B, or myeloid cells or in the expression of Dectin-1 in the spleens of the gemcitabine and EUG/gemcitabine groups. The EUG/gemcitabine group showed an enhanced GM-CSF production by lipopolysaccharides-stimulated splenocytes. Next-generation sequencing revealed that gemcitabine-induced dysbiosis was alleviated. This study demonstrated that EUG-derived beta-glucans could act as a biological response modifier as well as prebiotics for ameliorating chemotherapy-induced adverse effects.


Subject(s)
Antineoplastic Agents , Euglena gracilis , Leukopenia , beta-Glucans , Administration, Oral , Animals , Antineoplastic Agents/adverse effects , Antineoplastic Agents/metabolism , Dysbiosis/chemically induced , Dysbiosis/drug therapy , Euglena gracilis/metabolism , Glucans , Granulocyte-Macrophage Colony-Stimulating Factor , Mice , beta-Glucans/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...