Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Small Methods ; 5(2): e2000755, 2021 Feb.
Article in English | MEDLINE | ID: mdl-34927882

ABSTRACT

In a polycrystalline material, the grain boundaries (GBs) can be effective active sites for catalytic reactions by providing an electrodynamically favorable surface. Previous studies have shown that grain boundary density is related to the catalytic activity of the carbon dioxide reduction reaction, but there is still no convincing evidence that the GBs provide surfaces with enhanced activity for oxygen evolution reaction (OER). Combination of various electrochemical measurements and chemical analysis reveals the GB density at surface of NiFe electrocatalysts directly affects the overall OER. In situ electrochemical microscopy vividly shows that the OER occurs mainly at the GB during overall reaction. It is observed that the reaction determining steps are altered by grain boundary densities and the meaningful work function difference between the inside of grain and GBs exists. High-resolution transmission electron microscopy shows that extremely high index planes are exposed at the GBs, enhancing the oxygen evolution activity. The specific nature of GBs and its effects on the OER demonstrated in this study can be applied to the various polycrystalline electrocatalysts.

2.
Adv Mater ; 33(2): e2004827, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33215741

ABSTRACT

2D materials, such as graphene, exhibit great potential as functional materials for numerous novel applications due to their excellent properties. The grafting of conventional micropatterning techniques on new types of electronic devices is required to fully utilize the unique nature of graphene. However, the conventional lithography and polymer-supported transfer methods often induce the contamination and damage of the graphene surface due to polymer residues and harsh wet-transfer conditions. Herein, a novel strategy to obtain micropatterned graphene on polymer substrates using a direct curing process is demonstrated. Employing this method, entirely flexible, transparent, well-defined self-activated graphene sensor arrays, capable of gas discrimination without external heating, are fabricated on 4 in. wafer-scale substrates. Finite element method simulations show the potential of this patterning technique to maximize the performance of the sensor devices when the active channels of the 2D material are suspended and nanoscaled. This study contributes considerably to the development of flexible functional electronic devices based on 2D materials.

3.
Nanoscale ; 7(6): 2790-6, 2015 Feb 14.
Article in English | MEDLINE | ID: mdl-25585208

ABSTRACT

Three-dimensional (3-D) architectures can provide significant advantages as lithium ion microbattery electrodes by lengthening the vertical dimension. In addition, the nanoscale hierarchy and hollow properties are important factors for enhancing the performance. Here, we prepared a 3-D nickel sulfide nanoarchitecture via a facile low-temperature solution route. A Kirkendall effect-driven sulfidation of a 3-D nickel electrode was used to produce a hollow 3-D structure. Moreover, a nanoscale hierarchy can be formed with the use of highly concentrated sulfur species. The morphology, structure, and chemical composition of the 3-D nickel sulfide electrode are characterized in detail, and the formation mechanism is discussed based on a time-resolved study. The 3-D nickel sulfide electrodes show an outstanding areal capacity (1.5 mA h cm(-2) at a current rate of 0.5 mA cm(-2)), making this electrode a potential electrode for 3-D lithium ion microbatteries with a large energy density. Moreover, this strategy is expected to provide a general fabrication method for transition metal sulfide nanoarchitectures.

4.
J Hazard Mater ; 275: 10-8, 2014 Jun 30.
Article in English | MEDLINE | ID: mdl-24830569

ABSTRACT

Heterostructures can play a role in enhanced photoinduced electrochemical and catalytic reactions due to the advantageous combination of two compounds. Herein, we demonstrate the fabrication of Sb:SnO2@TiO2-SrTiO3 3D heterostructures via a simple hydrothermal method using a conductive Sb:SnO2@TiO2 nanobelt electrode as a template. XRD, FESEM, and TEM analyses confirm that a well-dispersed and crystalized SrTiO3 layer is formed on the surface of TiO2 nanorods. The photoelectrochemical (PEC) performance of the heterostructure is optimized by controlling the reaction time. Details about the effect of the hydrothermal reaction time on the PEC performance are discussed. The optimized Sb:SnO2@TiO2-SrTiO3 heterostructure exhibited a higher onset potential and a saturated photocurrent in comparison to the Sb:SnO2@TiO2 nanostructure. The result is attributed to a Fermi level shift and a blocking layer effect caused by the SrTiO3. Furthermore, the photocatalytic degradation of methylene blue was significantly enhanced on the optimized Sb:SnO2@TiO2-SrTiO3. This work demonstrates that a synergetic effect between three-dimensional nanoarchitecturing and a heterojunction structure is responsible for enhanced PEC as well as improved photocatalytic performance levels, both of which can be extended to other metal-oxide and/or ternary compounds.


Subject(s)
Antimony/chemistry , Nanostructures/chemistry , Oxides/chemistry , Strontium/chemistry , Tin Compounds/chemistry , Titanium/chemistry , Catalysis , Coloring Agents/chemistry , Electrochemical Techniques , Electrodes , Methylene Blue/chemistry , Nanostructures/ultrastructure , Oxides/radiation effects , Photolysis , Strontium/radiation effects , Sunlight , Titanium/radiation effects , Ultraviolet Rays
5.
J Nanosci Nanotechnol ; 14(12): 9307-12, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25971056

ABSTRACT

The spinel Li4Ti5O12 (LTO) is a promising candidate as a superior electrode material for energy storage devices due to the extremely small volume expansion/contraction during the charge/discharge processes of a battery. There are various synthetic approaches for the nanostructured LTO electrode: sol-gel, sonochemical, solution-combustion, hydrothermal methods, and others. Herein, three-dimensional (3D) high-density heterogeneous LTO architectures are fabricated by employing the TiO2 nanorods (NRs) branched SnO2 nanowire (NW) arrays as the template. The TiO2 NRs were effectively converted by the hydrothermal method into the LTO NRs that have a width of 40-nm and length of 100-nm, which induce branch/backbone structured LTO-SnO2 composites. Interestingly, the 3D LTO architectures exhibit unique geometrical shapes because the NRs are surrounded by small nanoparticles. We also discuss how the temperature and solvent affect the LTO nanostructure formation in detail. These results suggest that using a template can provide a new method for designing and synthesizing various classes of 3D architecturing synthesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...