Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Sci Total Environ ; 791: 148358, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34139490

ABSTRACT

Surface air temperature is an important factor for the permafrost thermal state in the Northern Hemisphere. It is therefore necessary to understand the variations and regional differences in air temperature to determine the interactions between permafrost degradation and climate change. In this study, we used observational data from the National Centers for Environmental Information, the China Meteorological Administration, and the World Data Centre for Meteorology to quantitatively analyze the variations and regional differences in air temperature from 1980 to 2018. The results demonstrated that the annual mean air temperatures were low in continuous permafrost regions and high in sporadic and isolated permafrost regions, with a significant warming rate of 0.371 ± 0.086 °C/decade. Air temperatures warmed the slowest during the winter and fastest during the spring, and no "warming hiatus" was observed in the permafrost regions of the Northern Hemisphere. The spatial patterns of freezing degree-days (FDDs) and thawing degree-days (TDDs) had different spatial characteristics. The decreasing rate of FDDs was -6.97 °C·days/year, while the increasing rate of TDDs was 6.4 °C·days/year. The air temperatures and warming trends had largely regional differences with respect to high latitude, transitional, and high altitude permafrost regions. Air temperature and its warming trend was the highest in high altitude regions. In addition, air temperature warming trends gradually decreased from the continuous permafrost zone to the island permafrost zone. The FDDs had a significant decreasing trend from the continuous permafrost zone to the island permafrost zone, whereas TDDs exhibited the opposite trend. The results indicate that the air temperature warming rate in the permafrost regions was approximately 2.0 times that of the global warming rate, and 1.3 times the global land warming rate from 1980 to 2018. These findings offer a perspective on the differences in permafrost and its thermal state across different regions under climate change.


Subject(s)
Permafrost , Climate Change , Global Warming , Seasons , Temperature
2.
Sci Adv ; 6(45)2020 Nov.
Article in English | MEDLINE | ID: mdl-33158866

ABSTRACT

Arctic river discharge increased over the last several decades, conveying heat and freshwater into the Arctic Ocean and likely affecting regional sea ice and the ocean heat budget. However, until now, there have been only limited assessments of riverine heat impacts. Here, we adopted a synthesis of a pan-Arctic sea ice-ocean model and a land surface model to quantify impacts of river heat on the Arctic sea ice and ocean heat budget. We show that river heat contributed up to 10% of the regional sea ice reduction over the Arctic shelves from 1980 to 2015. Particularly notable, this effect occurs as earlier sea ice breakup in late spring and early summer. The increasing ice-free area in the shelf seas results in a warmer ocean in summer, enhancing ocean-atmosphere energy exchange and atmospheric warming. Our findings suggest that a positive river heat-sea ice feedback nearly doubles the river heat effect.

3.
Sci Adv ; 6(2): eaax3308, 2020 01.
Article in English | MEDLINE | ID: mdl-31934623

ABSTRACT

Carbon release through boreal fires could considerably accelerate Arctic warming; however, boreal fire occurrence mechanisms and dynamics remain largely unknown. Here, we analyze fire activity and relevant large-scale atmospheric conditions over southeastern Siberia, which has the largest burned area fraction in the circumboreal and high-level carbon emissions due to high-density peatlands. It is found that the annual burned area increased when a positive Arctic Oscillation (AO) takes place in early months of the year, despite peak fire season occurring 1 to 2 months later. A local high-pressure system linked to the AO drives a high-temperature anomaly in late winter, causing premature snowmelt. This causes earlier ground surface exposure and drier ground in spring due to enhanced evaporation, promoting fire spreading. Recently, southeastern Siberia has experienced warming and snow retreat; therefore, southeastern Siberia requires appropriate fire management strategies to prevent massive carbon release and accelerated global warming.

SELECTION OF CITATIONS
SEARCH DETAIL
...