Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(15)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35898101

ABSTRACT

We developed a single-camera-based near-infrared (NIR) fluorescence imaging device using indocyanine green (ICG) NIR fluorescence contrast agents for image-induced surgery. In general, a fluorescent imaging system that simultaneously provides color and NIR images uses two cameras, which is disadvantageous because it increases the imaging head of the system. Recently, a single-camera-based NIR optical imaging device with quantum efficiency partially extended to the NIR region was developed to overcome this drawback. The system used RGB_NIR filters for camera sensors to provide color and NIR images simultaneously; however, the sensitivity and resolution of the infrared images are reduced by 1/4, and the exposure time and gain cannot be set individually when acquiring color and NIR images. Thus, to overcome these shortcomings, this study developed a compact fluorescent imaging system that uses a single camera with two complementary metal-oxide semiconductor (CMOS) image sensors. Sensitivity and signal-to-background ratio were measured according to the concentrations of ICG solution, exposure time, and camera gain to evaluate the performance of the imaging system. Consequently, the clinical applicability of the system was confirmed through the toxicity analysis of the light source and in vivo testing.


Subject(s)
Indocyanine Green , Optical Imaging , Fluorescence , Fluorescent Dyes , Optical Imaging/methods , Oxides , Semiconductors
2.
Biomed Res Int ; 2022: 4400276, 2022.
Article in English | MEDLINE | ID: mdl-35252445

ABSTRACT

The popularity of light/energy devices for cosmetic purposes (e.g., skin care) is increasing. However, the effects and underlying mechanisms remain poorly understood. Commencing in the 1960s, various studies have evaluated the beneficial effects of a light source on cells and tissues. The techniques evaluated include low-level light (laser) therapy and photobiomodulation (PBM). Most studies on PBM used red light sources, but, recently, many studies have employed near-infrared light sources including those of wavelength 800 nm. Here, we used a light-emitting diode (LED) array with a wavelength of 863 nm to treat DMBA/TPA-induced mouse skin tumors; treatment with the array delayed tumor development and reduced the levels of systemic inflammatory cytokines. These results suggest that light therapy could be beneficial. However, the effects were small. Further studies on different skin tumors using an optimized LED setup are required. Combination therapies (conventional methods and an LED array) may be useful.


Subject(s)
Low-Level Light Therapy , Skin Neoplasms , Animals , Cytokines , Infrared Rays , Low-Level Light Therapy/methods , Mice , Mice, Inbred ICR , Skin Neoplasms/chemically induced
3.
Biomed Opt Express ; 12(9): 5583-5596, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34692202

ABSTRACT

Photobiomodulation (PBM) is attracting increased attention in the fields of dermatology and cosmetics. PBM with a variety of light parameters has been used widely in skin care, but can cause certain types of unwanted cells to proliferate in the skin; this can lead to skin tumors, such as papillomas and cancers. We constructed a mouse model of human skin tumors using DMBA as an initiator and TPA as a promoter, and confirmed that LEDs with a wavelength of 642 nm (red light) increased tumor size, epidermal thickness, and systemic proinflammatory cytokine levels. These results indicated that skin tumor cell proliferation may result from the use of 642 nm LEDs, suggesting the need for regulation of skin care based on LED light therapy.

4.
Front Physiol ; 11: 459, 2020.
Article in English | MEDLINE | ID: mdl-32499718

ABSTRACT

The lymphatic system has many functions, including macromolecules transport, fat absorption, regulation and modulation of adaptive immune responses, clearance of inflammatory cytokines, and cholesterol metabolism. Thus, it is evident that lymphatic function can play a key role in the regulation of a wide array of biologic phenomenon, and that physiologic changes that alter lymphatic function may have profound pathologic effects. Recent studies have shown that obesity can markedly impair lymphatic function. Obesity-induced pathologic changes in the lymphatic system result, at least in part, from the accumulation of inflammatory cells around lymphatic vessel leading to impaired lymphatic collecting vessel pumping capacity, leaky initial and collecting lymphatics, alterations in lymphatic endothelial cell (LEC) gene expression, and degradation of junctional proteins. These changes are important since impaired lymphatic function in obesity may contribute to the pathology of obesity in other organ systems in a feed-forward manner by increasing low-grade tissue inflammation and the accumulation of inflammatory cytokines. More importantly, recent studies have suggested that interventions that inhibit inflammatory responses, either pharmacologically or by lifestyle modifications such as aerobic exercise and weight loss, improve lymphatic function and metabolic parameters in obese mice. The purpose of this review is to summarize the pathologic effects of obesity on the lymphatic system, the cellular mechanisms that regulate these responses, the effects of impaired lymphatic function on metabolic syndrome in obesity, and the interventions that may improve lymphatic function in obesity.

5.
J Control Release ; 276: 72-83, 2018 04 28.
Article in English | MEDLINE | ID: mdl-29499218

ABSTRACT

Stimuli-responsive polymeric nanoparticles are useful for overcoming challenges such as transfection efficiency and the specific and safe delivery of genes to cancer cells. Transfection outcomes can be improved through spatially and temporally controlled gene release. We formulated a nanoassembly comprising a disulfide-crosslinked polyethylenimine (ssPEI) conjugated with a tumor-specific cell-penetrating peptide (DS 4-3) (SPD) polyplex and bovine serum albumin (BSA)-loaded IR780 (BI) nanoparticle, thereby forming a dual-stimulus-triggered, tumor-penetrating and gene-carrying nanoassembly (BI-SPD) via electrostatic complexing. BI-SPD nanoassembly were composed of highly stable nanosized complexes with an average size of 457 ±â€¯27.5 nm, exhibiting an up to two-fold enhanced transfection efficiency with no sign of potential cytotoxicity in breast cancer cells. Moreover, upon laser irradiation, a four-fold increase in transfection efficiency was achieved due to the rapid endosomal escape of polyplexes triggered by the local heat induced by the BI-SPD nanoassembly. Additionally, the high redox environment in tumor cells facilitated the disassembly of the SPD polyplex for efficient plasmid release in the cytosol. The BI-SPD nanoassembly also exhibited high penetration and enhanced photothermally triggered gene expression in the 4T1 spheroid model. This BI-SPD nanoassembly has the potential to enhance the expression of therapeutic genes in tumor models without causing significant toxicity to surrounding healthy tissues, since it has shown higher tumor targeting and accumulation in the 4T1 tumor in mice model.


Subject(s)
Cell-Penetrating Peptides/administration & dosage , DNA/administration & dosage , Nanoparticles/administration & dosage , Polyethyleneimine/administration & dosage , Serum Albumin, Bovine/administration & dosage , Animals , Cell Line, Tumor , Cell-Penetrating Peptides/pharmacokinetics , Coloring Agents/administration & dosage , Coloring Agents/pharmacokinetics , DNA/pharmacokinetics , Disulfides , Gene Transfer Techniques , Indoles/administration & dosage , Indoles/pharmacokinetics , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/metabolism , Mice, Inbred BALB C , Plasmids , Polyethyleneimine/pharmacokinetics , Serum Albumin, Bovine/pharmacokinetics
6.
Mol Imaging Biol ; 20(4): 533-543, 2018 08.
Article in English | MEDLINE | ID: mdl-29450802

ABSTRACT

PURPOSE: Paclitaxel (PTX) loaded hydrophobically modified glycol chitosan (HGC) micelle is biocompatible in nature, but it requires cancer targeting ability and stimuli release property for better efficiency. To improve tumor retention and drug release characteristic of HGC-PTX nanomicelles, we conjugated cancer targeting heptamethine dye, MHI-148, which acts as an optical imaging agent, targeting moiety and also trigger on-demand drug release on application of NIR 808 nm laser. PROCEDURES: The amine group of glycol chitosan modified with hydrophobic 5ß-cholanic acid and the carboxyl group of MHI-148 were bonded by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide chemistry. Paclitaxel was loaded to MHI-HGC nanomicelle by an oil-in-water emulsion method, thereby forming MHI-HGC-PTX. RESULTS: Comparison of near infrared (NIR) dyes, MHI-148, and Flamma-774 conjugated to HGC showed higher accumulation for MHI-HGC in 4T1 tumor and 4T1 tumor spheroid. In vitro studies showed high accumulation of MHI-HGC-PTX in 4T1 and SCC7 cancer cell lines compared to NIH3T3 cell line. In vivo fluorescence imaging of the 4T1 and SCC7 tumor showed peak accumulation of MHI-HGC-PTX at day 1 and elimination from the body at day 6. MHI-HGC-PTX showed good photothermal heating ability (50.3 °C), even at a low concentration of 33 µg/ml in 1 W/cm2 808 nm laser at 1 min time point. Tumor reduction studies in BALB/c nude mice with SCC7 tumor showed marked reduction in MHI-HGC-PTX in the PTT group combined with photothermal therapy compared to MHI-HGC-PTX in the group without PTT. CONCLUSION: MHI-HGC-PTX is a cancer theranostic agent with cancer targeting and optical imaging capability. Our studies also showed that it has cancer targeting property independent of tumor type and tumor reduction property by combined photothermal and chemotherapeutic effects.


Subject(s)
Carbocyanines/chemistry , Chitosan/chemistry , Coloring Agents/chemistry , Light , Micelles , Nanoparticles/chemistry , Neoplasms/therapy , Theranostic Nanomedicine , Animals , Cell Line , Coumarins/chemistry , Humans , Hyperthermia, Induced , Mice, Inbred BALB C , Mice, Nude , Nanoparticles/ultrastructure , Neoplasms/pathology , Paclitaxel/pharmacology , Phototherapy , Spectroscopy, Near-Infrared , Thiazoles/chemistry , Tissue Distribution
7.
Carbohydr Polym ; 181: 1-9, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29253923

ABSTRACT

In this study, we propose using IR 780-loaded, CD44-targeted hyaluronic acid-based micelles (HA-IR 780) for enhanced photothermal therapy (PTT) effects in tumors. Two kinds of HA-C18 micelles were synthesized from different C18 feed ratios with degree of substitution of 3% and 13% respectively. Three different IR 780 weight percentages were used for micelle formation with loading content of 4.6%, 7.9%, and 10.3% respectively. The IC50 value of HA-IR 780 in TC1 cells was 21.89µgmL-1 (32.81µM). Upon irradiation of the tumor site with an 808-nm laser (2Wcm-2) for 2min, the temperature in the tumor in the HA-IR 780-treated groups reached 49.9°C which exceeds the temperature threshold to induce irreversible tissue damage. Toxicity studies showed that HA-IR 780 does not cause any adverse effects in organs, including heart, liver, lungs, kidney and spleen, although it selectively caused cell damage in the tumor region upon laser irradiation. Therefore, the present study suggests that HA-IR 780 can cause selective cell death in tumor regions due to its enhanced tumor-targeting and photothermal capabilities.


Subject(s)
Hyaluronic Acid/chemistry , Hyperthermia, Induced , Indoles/therapeutic use , Micelles , Neoplasms/drug therapy , Phototherapy , Animals , Cell Survival/drug effects , Endocytosis/drug effects , Hyaluronan Receptors/metabolism , Indoles/pharmacology , Mice, Inbred C57BL , Neoplasms/pathology , Tissue Distribution/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...