Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36559758

ABSTRACT

Insulated gate bipolar transistor (IGBT) is an important power device for the conversion, control, and transmission of semiconductor power, and is used in various industrial fields. The IGBT module currently uses silicone gel as an insulating layer. Since higher power density and more severe temperature applications have become the trend according to the development of electronic device industry, insulating materials with improved heat resistance and insulation performances should be developed. In this study, we intended to synthesize a new insulating material with enhanced thermal stability and reduced thermal conductivity. Poly(imide-siloxane) (PIS) was prepared and crosslinked through a hydrosilylation reaction to obtain a semi-solid Crosslinked PIS. Thermal decomposition temperature, thermal conductivity, optical transparency, dielectric constant, and rheological property of the Crosslinked PIS were investigated and compared to those of a commercial silicone gel. The Crosslinked PIS showed high thermal stability and low thermal conductivity, along with other desirable properties, and so could be useful as an IGBT-insulating material.

2.
Nanomaterials (Basel) ; 10(12)2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33260819

ABSTRACT

Graphene oxide (GO)-cysteamine-Ag nanoparticles (GCA)-silver nanowire (AgNW) fabricated by depositing GCA over sprayed AgNWs on PET films were proposed for transparent and flexible electrodes, and their optical, electrical, and mechanical properties were analyzed by energy-dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy, Raman spectroscopy, atomic force microscopy, scanning electron microscopy, transmission electron microscopy, current-voltage measurements, and bending test. GCA-AgNW electrodes show optical transmittance of >80% at 550 nm and exhibit a high figure-of-merit value of up to 116.13 in the samples with sheet resistances of 20-40 Ω/◻. It was observed that the detrimental oxidation of bare AgNWs over time was considerably decreased, and the mechanical robustness was improved. To apply the layer as an actual electrode in working devices, a Pt/GO/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate/GCA-AgNW/polyethylene terephthalate structure was fabricated, and resistive switching memory was demonstrated. On the basis of these results, we confirm that the proposed GCA-AgNW layer can be used as transparent and flexible electrode.

3.
Polymers (Basel) ; 11(9)2019 Sep 13.
Article in English | MEDLINE | ID: mdl-31540300

ABSTRACT

Pyromellitic dianhydride (PMDA) and 4,4'-oxydianiline (ODA) oligoimide particles and PMDA-ODA poly(amic acid) salt (PAAS) were synthesized and used as stabilizers to prepare oil-in-water Pickering high internal phase emulsions (HIPEs). The stability of the Pickering HIPEs was investigated by dispersion stability analysis. Polyimide-based polyHIPEs could be prepared through freeze-drying and subsequent thermal imidization of the Pickering HIPEs. The characteristics of the polyHIPEs, including their morphology, porosity, thermal decomposition temperature, and compression modulus, were investigated. The thermal decomposition temperature (T10) of the polyHIPEs was very high (>530 °C), and their porosity was as high as 92%. The polyimide-based polyHIPEs have the potential to be used in high-temperature environments.

4.
Polymers (Basel) ; 11(3)2019 Mar 12.
Article in English | MEDLINE | ID: mdl-30960461

ABSTRACT

Polyimide films have conventionally been prepared by thermal imidization of poly(amic acid)s (PAAs). Here we report that the improvement of tensile strength while increasing (or maintaining) film flexibility of polyimide films was accomplished by simple microwave (MW) irradiation of the PAAs. This improvement in mechanical properties can be attributed to the increase in molecular weight of the polyimides by MW irradiation. Our results show that the mechanical properties of polyimide films can be improved by MW irradiation, which is a green approach that requires relatively low MW power, very short irradiation time, and no incorporation of any additional inorganic substance.

SELECTION OF CITATIONS
SEARCH DETAIL
...