Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38683717

ABSTRACT

Robot-assisted motor training is applied for neurorehabilitation in stroke patients, using motor imagery (MI) as a representative paradigm of brain-computer interfaces to offer real-life assistance to individuals facing movement challenges. However, the effectiveness of training with MI may vary depending on the location of the stroke lesion, which should be considered. This paper introduces a multi-task electroencephalogram-based heterogeneous ensemble learning (MEEG-HEL) specifically designed for cross-subject training. In the proposed framework, common spatial patterns were used for feature extraction, and the features according to stroke lesions are shared and selected through sequential forward floating selection. The heterogeneous ensembles were used as classifiers. Nine patients with chronic ischemic stroke participated, engaging in MI and motor execution (ME) paradigms involving finger tapping. The classification criteria for the multi-task were established in two ways, taking into account the characteristics of stroke patients. In the cross-subject session, the first involved a direction recognition task for two-handed classification, achieving a performance of 0.7419 (±0.0811) in MI and 0.7061 (±0.1270) in ME. The second task focused on motor assessment for lesion location, resulting in a performance of 0.7457 (±0.1317) in MI and 0.6791 (±0.1253) in ME. Comparing the specific-subject session, except for ME on the motor assessment task, performance on both tasks was significantly higher than the cross-subject session. Furthermore, classification performance was similar to or statistically higher in cross-subject sessions compared to baseline models. The proposed MEEG-HEL holds promise in improving the practicality of neurorehabilitation in clinical settings and facilitating the detection of lesions.


Subject(s)
Algorithms , Brain-Computer Interfaces , Electroencephalography , Machine Learning , Stroke Rehabilitation , Humans , Male , Female , Middle Aged , Electroencephalography/methods , Stroke Rehabilitation/methods , Aged , Imagination/physiology , Stroke/physiopathology , Stroke/complications , Robotics , Adult , Psychomotor Performance , Ischemic Stroke/physiopathology , Ischemic Stroke/rehabilitation , Imagery, Psychotherapy/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...