Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 533: 266-74, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26172593

ABSTRACT

In this study, we demonstrated an antimicrobial nanoparticle-coated electrostatic (ES) air filter. Antimicrobial natural-product Sophora flavescens nanoparticles were produced using an aerosol process, and were continuously deposited onto the surface of air filter media. For the electrostatic activation of the filter medium, a corona discharge electrification system was used before and after antimicrobial treatment of the filter. In the antimicrobial treatment process, the deposition efficiency of S. flavescens nanoparticles on the ES filter was ~12% higher than that on the pristine (Non-ES) filter. In the evaluation of filtration performance using test particles (a nanosized KCl aerosol and submicron-sized Staphylococcus epidermidis bioaerosol), the ES filter showed better filtration efficiency than the Non-ES filter. However, antimicrobial treatment with S. flavescens nanoparticles affected the filtration efficiency of the filter differently depending on the size of the test particles. While the filtration efficiency of the KCl nanoparticles was reduced on the ES filter after the antimicrobial treatment, the filtration efficiency was improved after the recharging process. In summary, we prepared an antimicrobial ES air filter with >99% antimicrobial activity, ~92.5% filtration efficiency (for a 300-nm KCl aerosol), and a ~0.8 mmAq pressure drop (at 13 cm/s). This study provides valuable information for the development of a hybrid air purification system that can serve various functions and be used in an indoor environment.


Subject(s)
Air Filters , Anti-Infective Agents , Nanoparticles , Static Electricity , Air Microbiology
2.
J Colloid Interface Sci ; 362(2): 261-6, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21757200

ABSTRACT

A gas-phase, one-step method for producing various aerosol carbon nanostructures is described. The carbon nanostructures can be selectively tailored with either straight, coiled, or sea urchin-like structures by controlling the size of Ni-Al bimetallic nanoparticles and the reaction temperature. The carbon nanostructures were grown using both conventional spray pyrolysis and thermal chemical vapor deposition. Bimetallic nanoparticles with catalytic Ni (guest) and non-catalytic Al (host) matrix were reacted with acetylene and hydrogen gases. At the processing temperature range of 650-800 °C, high concentration straight carbon nanotubes (S-CNTs) with a small amount of coiled carbon nanotubes (C-CNTs) can be grown on the surface of seeded bimetallic nanoparticle size <100 nm, resulting from consumption of the melting Al matrix sites; sea urchin-like carbon nanotubes (SU-CNTs) of small diameter (∼10±4 nm) can be grown on the bimetallic nanoparticle size >100 nm, resulting from the significant size reduction of the available Ni sites due to thermal expansion of molten Al matrix sites without consumption of Al matrix. However, at the processing temperature range of 500-650 °C, C-CNTs can be grown on the bimetallic nanoparticle size <100 nm due to the presence of Al matrix in the bimetallic nanoparticles; SU-CNTs of large diameter (∼60±13 nm) can also be grown on the bimetallic nanoparticle size >100 nm due to the isolation of Ni sites in the Al matrix.

SELECTION OF CITATIONS
SEARCH DETAIL
...