Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Epidemiol Infect ; 150: e40, 2022 02 21.
Article in English | MEDLINE | ID: mdl-35184772

ABSTRACT

Nosocomial transmission of COVID-19 among immunocompromised hosts can have a serious impact on COVID-19 severity, underlying disease progression and SARS-CoV-2 transmission to other patients and healthcare workers within hospitals. We experienced a nosocomial outbreak of COVID-19 in the setting of a daycare unit for paediatric and young adult cancer patients. Between 9 and 18 November 2020, 473 individuals (181 patients, 247 caregivers/siblings and 45 staff members) were exposed to the index case, who was a nursing staff. Among them, three patients and four caregivers were infected. Two 5-year-old cancer patients with COVID-19 were not severely ill, but a 25-year-old cancer patient showed prolonged shedding of SARS-CoV-2 RNA for at least 12 weeks, which probably infected his mother at home approximately 7-8 weeks after the initial diagnosis. Except for this case, no secondary transmission was observed from the confirmed cases in either the hospital or the community. To conclude, in the day care setting of immunocompromised children and young adults, the rate of in-hospital transmission of SARS-CoV-2 was 1.6% when applying the stringent policy of infection prevention and control, including universal mask application and rapid and extensive contact investigation. Severely immunocompromised children/young adults with COVID-19 would have to be carefully managed after the mandatory isolation period while keeping the possibility of prolonged shedding of live virus in mind.


Subject(s)
COVID-19/epidemiology , Cancer Care Facilities , Cross Infection/epidemiology , Day Care, Medical , Infectious Disease Transmission, Professional-to-Patient , Neoplasms/therapy , Adolescent , Adult , Aged , COVID-19/immunology , COVID-19/transmission , Caregivers , Child , Child, Preschool , Cross Infection/immunology , Cross Infection/transmission , Disease Outbreaks , Female , Humans , Immunocompromised Host , Infant , Male , Middle Aged , Neoplasms/immunology , Republic of Korea/epidemiology , SARS-CoV-2 , Young Adult
2.
ACS Omega ; 7(5): 4135-4139, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35155907

ABSTRACT

As electromagnetic (EM) pollution continues to increase, electromagnetic interference (EMI) shielding materials have been intensively evaluated in terms of two main shielding mechanisms of reflection and absorption. Since the shielding effectiveness (SE) is represented in the logarithmic scale and in a coupled way of transmission (SET), absorption (SEA), and reflection (SER), often there is a misinterpretation that the EM wave reflectors are regarded as EM wave-absorbing materials. Surprisingly, we found that many materials reported as an EM wave absorber in the literature provide, in fact, less than 50% of EM wave-absorbing capability, i.e., over 50% of EM wave-reflecting feature. According to the theory and definition of EMI SE, the absorption-dominant EMI shielding materials should have the ratio of absorption to incident energy (A) as A > 0.5, which corresponds to a necessary condition that SER < 3.01 dB. The SER subsequently gives SEA in relation to SET. Using this criterion, we classified the EMI shielding materials with their shielding mechanism. The proposed methodology provides significant insight into the evaluation and development of EMI shielding materials.

3.
Sci Rep ; 11(1): 19098, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34580382

ABSTRACT

Genetic mutations such as single nucleotide polymorphisms (SNP) are known as one of the most common forms which related to various genetic disorders and cancers. Among of the methods developed for efficient detection of such SNP, polymerase chain reaction (PCR) methods are widely used worldwide for its cost and viable advantages. However, the technique to discriminate small amounts of SNP mixed in abundant normal DNA is incomplete due to intrinsic technical problems of PCR such as amplification occurring even in 3'mismatched cases because of high enzyme activity of DNA polymerases. To overcome the issue, specifically designed PCR platform, STexS (SNP typing with excellent specificity) using double stranded oligonucleotides was implemented as a means to emphasize the amplification of SNP templates by decreasing unwanted amplification of 3'mismatched DNA copies. In this study, the results indicate several EGFR mutations were easily detected specifically utilizing the STexS platform. Further trials show the novel method works effectively to discriminate mutations in not only general allele specific (AS)-PCRs, but also amplification refractory mutation system (ARMS)-PCR. The STexS platform will give aid in PCRs targeting potential SNPs or genetically mutated biomarkers in human clinical samples.


Subject(s)
DNA Primers/chemistry , Polymerase Chain Reaction/methods , Polymorphism, Single Nucleotide , Humans , Nucleic Acid Conformation , Sensitivity and Specificity
4.
J Thorac Dis ; 13(7): 4530-4540, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34422379

ABSTRACT

BACKGROUND: Exercise intensity in exercise training programs is an important determinant of program efficacy, such as improvement in exercise capacity and quality of life (QOL). It is not well known whether differently applied exercise intensities are efficacious when used in exercise-based cardiac rehabilitation programs for patients with pulmonary arterial hypertension (PAH). METHODS: Three databases (PubMed, EMBASE, and CINAHL) were searched with the following inclusion criteria: comparative study of exercise interventions for patients with pulmonary arterial hypertension. Three clinical specialists (a physician, nurse, and exercise physiologist) selected the included articles using the process of systematic review. Included articles were grouped according to aerobic exercise intensity: low, moderate-to-vigorous, and vigorous. The level of evidence for each study was rated using Sackett's levels of evidence. RESULTS: Of 1,452 studies reviewed, 8 were included according to the inclusion criteria (3 randomized controlled trials (RCTs), 3 prospective studies, and 2 case series). Exercise capacity for a six-minute walk distance (mean: 57.7 m) and QOL improved in the above moderate intensity group, while the low intensity group did not show improvement after intervention. For termination criteria, data obtained from the reviewed articles were not sufficient to suggest any exercise intensity recommendations for patients with pulmonary arterial hypertension. DISCUSSION: The findings in this study suggest that at least moderate aerobic exercise intensity is needed to significantly improve six-minute walk distance and QOL in individuals diagnosed with World Health Organization Group 1 of pulmonary arterial hypertension. There is a need for prospective RCTs comparing different exercise intensities in this patient population.

5.
Soft Matter ; 16(29): 6812-6818, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32632426

ABSTRACT

As highly integrated electronic devices and automotive parts are becoming used in high-power and load-bearing systems, thermal conductivity and mechanical damping properties have become critical factors. In this study, we applied two different fillers of aluminium nitride (AlN) and boron nitride (BN), having polygonal and platelet shapes, respectively, into ethylene-propylene-diene monomer (EPDM) rubber to ensure improved thermo-mechanical properties of EPDM composites. These two different shapes are considered advantageous in providing effective pathways of phonon transfer as well as facilitating sliding movement of packed particles. When the volume ratio of AlN : BN was 1 : 1, the thermal conductivity of the hybrid-filler system (EPDM/AlN/BN) increased in comparison to that of the single-filler system (EPDM/AlN) of 3.03 to 4.76 W m-1 K-1. The coefficient of thermal expansion (CTE) and thermal distortion parameter (TDP) substantially decreased from 59.3 ppm °C-1 and 17.5 m K-1 of EPDM/AlN, to 39.7 ppm °C-1 and 8.4 m K-1 of EPDM/AlN/BN, representing reductions of 33 and 52%, respectively. Moreover, the damping coefficient of EPDM/AlN/BN was greatly increased to 0.5 of at 50 °C, compared to 0.03 of neat EPDM. These excellent performances likely stem from the effective packing of AlN/BN hybrid fillers, which could induce facile energy transfer and effective energy dissipation by the sliding movement of the adjacent hybrid fillers in the EPDM matrix.

6.
Sci Rep ; 10(1): 7501, 2020 May 05.
Article in English | MEDLINE | ID: mdl-32371914

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
ACS Omega ; 4(5): 7994-8000, 2019 May 31.
Article in English | MEDLINE | ID: mdl-31459887

ABSTRACT

Electroadhesive devices can lift materials of different shapes and various types using the electrostatic force developed at the interface between the device and the object. More specifically, the electrical potential generated by the device induces opposite charges on the object to give electrostatic Maxwell force. Although this technology has a great deal of potential, the key design factors based on the fundamental principles of interfacial polarization have yet to be clearly identified. In this study, we identify that the lifting force is quantitatively related to the total length of the boundary edges of the electrodes, where the induced charges are selectively concentrated. We subsequently propose a model equation that can predict the electrostatic lifting forces for different object materials as a function of the applied voltage, impedance, and electrode-boundary length. The model is based on the fact that the amount of induced charges should be concentrated where the equipotential field distance is minimal. We report that the impedance magnitude is correlated with the electroadhesive lifting forces by analyzing the impedance characteristics of objects made of different materials (e.g., paper, glass, or metal), as attached in situ to the electroadhesive device.

8.
Sci Rep ; 9(1): 7033, 2019 05 07.
Article in English | MEDLINE | ID: mdl-31065000

ABSTRACT

The pristine lignin molecules contain multiple reactive hydroxyl [OH] groups, some of which undergo limited polymerization depending on their configuration (aromatic or aliphatic) or conformation. The key issue in lignin-polymerization is to quantify the number of hydroxyl groups in the pristine molecules for subsequent activation to specific lignin-polymer chain lengths or degree of grafting. In this study, using ε-caprolactone (CL) as a reactive solvent, we successfully polymerized CL on the [OH] sites in the kraft lignin macromonomers (LM, Mw = 1,520 g mol-1), which resulted in a thermoplastic lignin-polycaprolactone (PCL) grafted copolymer. We found that the average number of [OH] groups in the LM was 15.3 groups mol-1, and further detected 40-71% of the [OH] groups in the CL bulk polymerization. The degree of polymerization of PCL grown on each [OH] site ranged between 7 and 26 depending on the reaction conditions ([CL]/[OH] and reaction-time) corresponding to 4,780 and 32,600 g mol-1 of PCL chains per a LM. The thermoplastic characteristics of the synthesized lignin-PCL copolymers were established by the melt viscosity exhibiting a shear-thinning behavior, e.g., 921 Pa.s at 180 °C. The thermal stability was remarkable providing a Tid (2% of weight loss) of 230 °C of the copolymers, compared with 69 °C for the pristine lignin.

9.
PLoS One ; 13(12): e0209243, 2018.
Article in English | MEDLINE | ID: mdl-30586449

ABSTRACT

We investigated the feasibility of low-dose coronary computed tomography angiography (CCTA), using a prospective electrocardiogram (ECG)-triggered axial scan protocol, knowledge-based iterative model reconstruction (IMR), and fixed tube current, in overweight subjects. Forty non-overweight (group A; body-mass index [BMI] < 25 kg/m2) and 40 overweight individuals (group B; BMI = 25-30 kg/m2), who underwent CCTA for coronary artery disease screening, were retrospectively and consecutively enrolled. A 64-slice CT scanner was used at 100-kVp tube voltage and 150-mA tube current, and images were reconstructed using IMR techniques. Image noise, attenuation at the aorta, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) at the proximal right and left main coronary arteries (pRCA and LMCA) were calculated. CCTA images were qualitatively evaluated using a four-point scale (1, poor; 4, excellent) and analyzed using a non-inferiority test with a pre-defined non-inferiority margin of -0.2. The mean CCTA radiation dose (Group A: 1.33 ± 0.02 mSv; Group B: 1.35 ± 0.10 mSv; p = 0.151) and mean aortic root CT attenuation values (Group A: 447.9 ± 81.6 HU; Group B: 439.5 ± 63.6 HU; p = 0.571) did not differ significantly between the two groups. The mean noise in groups A and B was 26.0 ± 4.8 HU and 29.2 ± 4.4 HU, respectively (p = 0.005). The noise reduction ratio in the groups, compared to filtered back projection, was 65.0% and 68.1%, respectively. The mean grade of image quality did not differ significantly (3.75 ± 0.04 vs. 3.71 ± 0.04, p = 0.478). Group B CCTA image quality was non-inferior (mean difference = -0.043, 95% CI = -0.162-0.077) to that of Group A. We concluded that low-dose CCTA with prospective ECG-triggering and IMR might be applied to overweight subjects, as well as to normal-weight subjects, by using a fixed tube current without an increase in tube current based on the patient's body size.


Subject(s)
Computed Tomography Angiography/methods , Coronary Angiography/methods , Overweight/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Algorithms , Coronary Artery Disease/diagnostic imaging , Electrocardiography/methods , Feasibility Studies , Female , Heart/diagnostic imaging , Humans , Male , Middle Aged , Prospective Studies , Radiation Dosage , Retrospective Studies
10.
PLoS One ; 13(5): e0197070, 2018.
Article in English | MEDLINE | ID: mdl-29750794

ABSTRACT

OBJECTIVES: Apparent diffusion coefficient (ADC) has been suggested to reflect the tumor grades of hepatocellular carcinomas (HCCs); i.e., it can be used as a biomarker to predict the patients' prognosis. To verify its feasibility as a biomarker, the present study sought to determine how the ADC values of HCC are affected by a tumor's histopathologic grade and arterial vascularity. MATERIALS AND METHODS: From 131 consecutive patients, 141 surgically resected HCCs (16 well-differentiated [wd-HCCs], 83 moderately-differentiated [md-HCCs], and 42 poorly-differentiated HCCs [pd-HCCs]) were subjected to a comparison of the tumors' arterial vascularity (non-, slightly-, or markedly-hypervascular) determined on dynamic magnetic resonance imaging (MRI) and the ADC was measured retrospectively. RESULTS: The pd-HCCs (1.05±0.16 × 10-3 mm2/s) had a significantly lower ADC than md-HCCs (1.16±0.21 × 10-3 mm2/s; p = 0.010), but there was no significant difference compared to wd-HCCs (1.11±0.18 × 10-3 mm2/s; p = 0.968). The mean ADC was significantly higher in markedly hypervascular lesions (1.20±0.20 × 10-3 mm2/s) than in nonhypervascular lesions (0.95±0.14 × 10-3mm2/s; p<0.001) or slightly hypervascular lesions (1.04±0.15 × 10-3mm2/s; p<0.001). The ADC values and arterial vascularity were significantly correlated in wd-HCCs (p = 0.005) and md-HCCs (p<0.001). The mean ADC of pd-HCCs was significantly lower than those of other lesions, even in the markedly hypervascular lesion subgroup (p = 0.020). CONCLUSION: Although pd-HCC constantly shows low ADCs regardless of arterial vascularities, ADCs cannot stably stratify histopathologic tumor grades due to the variable features of wd-HCCs; and the ADC should be used with caution as a tumor biomarker of HCC.


Subject(s)
Arteries/diagnostic imaging , Carcinoma, Hepatocellular , Diffusion Magnetic Resonance Imaging , Liver Neoplasms , Adult , Aged , Aged, 80 and over , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/diagnostic imaging , Female , Humans , Liver Neoplasms/blood supply , Liver Neoplasms/diagnostic imaging , Male , Middle Aged , Neoplasm Grading
11.
Proc Natl Acad Sci U S A ; 109(29): 11717-22, 2012 Jul 17.
Article in English | MEDLINE | ID: mdl-22753465

ABSTRACT

The Wnt/ß-catenin pathway, which signals through the Frizzled (Fzd) receptor family and several coreceptors, has long been implicated in cancer. Here we demonstrate a therapeutic approach to targeting the Wnt pathway with a monoclonal antibody, OMP-18R5. This antibody, initially identified by binding to Frizzled 7, interacts with five Fzd receptors through a conserved epitope within the extracellular domain and blocks canonical Wnt signaling induced by multiple Wnt family members. In xenograft studies with minimally passaged human tumors, this antibody inhibits the growth of a range of tumor types, reduces tumor-initiating cell frequency, and exhibits synergistic activity with standard-of-care chemotherapeutic agents.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Frizzled Receptors/metabolism , Neoplasms/drug therapy , Wnt Signaling Pathway/drug effects , Animals , Antibodies, Monoclonal/metabolism , Antineoplastic Agents/metabolism , Blotting, Western , CHO Cells , Cricetinae , Cricetulus , Drug Synergism , Genetic Vectors/genetics , HEK293 Cells , Humans , Immunoglobulin Fab Fragments/genetics , Immunohistochemistry , Lentivirus , Luciferases , Neoplasms/metabolism , Peptide Library , Wnt Signaling Pathway/physiology
13.
Korean J Pain ; 23(3): 198-201, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20830266

ABSTRACT

Persistent and intractable hiccups (with respective durations of more than 48 hours and 1 month) can result in depression, fatigue, impaired sleep, dehydration, weight loss, malnutrition, and aspiration syndromes. The conventional treatments for hiccups are either non-pharmacological, pharmacological or a nerve block treatment. Pulsed radiofrequency lesioning (PRFL) has been proposed for the modulation of the excited nervous system pathway of pain as a safe and nondestructive treatment method. As placement of the electrode in close proximity to the targeted nerve is very important for the success of PRFL, ultrasound appears to be well suited for this technique. A 74-year-old man suffering from intractable hiccups that had developed after a coronary artery bypass graft and had continued for 7 years was referred to our pain clinic. He had not been treated with conventional methods or medications. We performed PRFL of the phrenic nerve guided by ultrasound and the hiccups disappeared.

14.
Cell Stem Cell ; 5(2): 168-77, 2009 Aug 07.
Article in English | MEDLINE | ID: mdl-19664991

ABSTRACT

Previous studies have shown that blocking DLL4 signaling reduced tumor growth by disrupting productive angiogenesis. We developed selective anti-human and anti-mouse DLL4 antibodies to dissect the mechanisms involved by analyzing the contributions of selectively targeting DLL4 in the tumor or in the host vasculature and stroma in xenograft models derived from primary human tumors. We found that each antibody inhibited tumor growth and that the combination of the two antibodies was more effective than either alone. Treatment with anti-human DLL4 inhibited the expression of Notch target genes and reduced proliferation of tumor cells. Furthermore, we found that specifically inhibiting human DLL4 in the tumor, either alone or in combination with the chemotherapeutic agent irinotecan, reduced cancer stem cell frequency, as shown by flow cytometric and in vivo tumorigenicity studies.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Intercellular Signaling Peptides and Proteins/immunology , Neoplasms/therapy , Neoplastic Stem Cells/immunology , Receptors, Notch/metabolism , Adaptor Proteins, Signal Transducing , Animals , Antineoplastic Agents, Phytogenic/therapeutic use , Apoptosis Regulatory Proteins/metabolism , Calcium-Binding Proteins , Camptothecin/analogs & derivatives , Camptothecin/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Chaperonin 60/agonists , Chaperonin 60/metabolism , Drug Synergism , Humans , Inhibitor of Apoptosis Proteins/metabolism , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Irinotecan , Membrane Proteins/antagonists & inhibitors , Mice , Neoplasms/pathology , Neoplastic Stem Cells/drug effects , Neovascularization, Pathologic/metabolism , Secondary Prevention , Xenograft Model Antitumor Assays
15.
PLoS One ; 3(6): e2428, 2008 Jun 18.
Article in English | MEDLINE | ID: mdl-18560594

ABSTRACT

BACKGROUND: Patients generally die of cancer after the failure of current therapies to eliminate residual disease. A subpopulation of tumor cells, termed cancer stem cells (CSC), appears uniquely able to fuel the growth of phenotypically and histologically diverse tumors. It has been proposed, therefore, that failure to effectively treat cancer may in part be due to preferential resistance of these CSC to chemotherapeutic agents. The subpopulation of human colorectal tumor cells with an ESA(+)CD44(+) phenotype are uniquely responsible for tumorigenesis and have the capacity to generate heterogeneous tumors in a xenograft setting (i.e. CoCSC). We hypothesized that if non-tumorigenic cells are more susceptible to chemotherapeutic agents, then residual tumors might be expected to contain a higher frequency of CoCSC. METHODS AND FINDINGS: Xenogeneic tumors initiated with CoCSC were allowed to reach approximately 400 mm(3), at which point mice were randomized and chemotherapeutic regimens involving cyclophosphamide or Irinotecan were initiated. Data from individual tumor phenotypic analysis and serial transplants performed in limiting dilution show that residual tumors are enriched for cells with the CoCSC phenotype and have increased tumorigenic cell frequency. Moreover, the inherent ability of residual CoCSC to generate tumors appears preserved. Aldehyde dehydrogenase 1 gene expression and enzymatic activity are elevated in CoCSC and using an in vitro culture system that maintains CoCSC as demonstrated by serial transplants and lentiviral marking of single cell-derived clones, we further show that ALDH1 enzymatic activity is a major mediator of resistance to cyclophosphamide: a classical chemotherapeutic agent. CONCLUSIONS: CoCSC are enriched in colon tumors following chemotherapy and remain capable of rapidly regenerating tumors from which they originated. By focusing on the biology of CoCSC, major resistance mechanisms to specific chemotherapeutic agents can be attributed to specific genes, thereby suggesting avenues for improving cancer therapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Camptothecin/analogs & derivatives , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Cyclophosphamide/therapeutic use , Neoplastic Stem Cells/cytology , Aldehyde Dehydrogenase/genetics , Animals , Camptothecin/therapeutic use , Humans , Irinotecan , Mice
16.
Nature ; 453(7192): 228-32, 2008 May 08.
Article in English | MEDLINE | ID: mdl-18418377

ABSTRACT

Haematopoiesis is maintained by a hierarchical system where haematopoietic stem cells (HSCs) give rise to multipotent progenitors, which in turn differentiate into all types of mature blood cells. HSCs maintain themselves for the lifetime of the organism because of their ability to self-renew. However, multipotent progenitors lack the ability to self-renew, therefore their mitotic capacity and expansion potential are limited and they are destined to eventually stop proliferating after a finite number of cell divisions. The molecular mechanisms that limit the proliferation capacity of multipotent progenitors and other more mature progenitors are not fully understood. Here we show that bone marrow cells from mice deficient in three genes genetically downstream of Bmi1--p16Ink4a, p19Arf and Trp53 (triple mutant mice; p16Ink4a and p19Arf are alternative reading frames of the same gene (also called Cdkn2a) that encode different proteins)--have an approximately 10-fold increase in cells able to reconstitute the blood long term. This increase is associated with the acquisition of long-term reconstitution capacity by cells of the phenotype c-kit+Sca-1+Flt3+CD150-CD48-Lin-, which defines multipotent progenitors in wild-type mice. The pattern of triple mutant multipotent progenitor response to growth factors resembles that of wild-type multipotent progenitors but not wild-type HSCs. These results demonstrate that p16Ink4a/p19Arf and Trp53 have a central role in limiting the expansion potential of multipotent progenitors. These pathways are commonly repressed in cancer, suggesting a mechanism by which early progenitor cells could gain the ability to self-renew and become malignant with further oncogenic mutations.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p16/deficiency , Genes, p16 , Genes, p53/genetics , Hematopoiesis , Hematopoietic Stem Cells/cytology , Multipotent Stem Cells/cytology , Tumor Suppressor Protein p53/deficiency , Animals , Cell Count , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Multipotent Stem Cells/immunology , Multipotent Stem Cells/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
17.
Proc Natl Acad Sci U S A ; 104(24): 10158-63, 2007 Jun 12.
Article in English | MEDLINE | ID: mdl-17548814

ABSTRACT

Recent observations indicate that, in several types of human cancer, only a phenotypic subset of cancer cells within each tumor is capable of initiating tumor growth. This functional subset of cancer cells is operationally defined as the "cancer stem cell" (CSC) subset. Here we developed a CSC model for the study of human colorectal cancer (CRC). Solid CRC tissues, either primary tissues collected from surgical specimens or xenografts established in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice, were disaggregated into single-cell suspensions and analyzed by flow cytometry. Surface markers that displayed intratumor heterogeneous expression among epithelial cancer cells were selected for cell sorting and tumorigenicity experiments. Individual phenotypic cancer cell subsets were purified, and their tumor-initiating properties were investigated by injection in NOD/SCID mice. Our observations indicate that, in six of six human CRC tested, the ability to engraft in vivo in immunodeficient mice was restricted to a minority subpopulation of epithelial cell adhesion molecule (EpCAM)(high)/CD44+ epithelial cells. Tumors originated from EpCAM(high)/CD44+ cells maintained a differentiated phenotype and reproduced the full morphologic and phenotypic heterogeneity of their parental lesions. Analysis of the surface molecule repertoire of EpCAM(high)/CD44+ cells led to the identification of CD166 as an additional differentially expressed marker, useful for CSC isolation in three of three CRC tested. These results validate the stem cell working model in human CRC and provide a highly robust surface marker profile for CRC stem cell isolation.


Subject(s)
Antigens, Neoplasm , Biomarkers, Tumor/immunology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Stem Cells/immunology , Activated-Leukocyte Cell Adhesion Molecule/immunology , Animals , Antigens, Neoplasm/immunology , Cell Separation , Colorectal Neoplasms/genetics , Colorectal Neoplasms/surgery , Epithelial Cells/immunology , Flow Cytometry , Humans , Hyaluronan Receptors/immunology , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Transplantation , Phenotype , Transplantation, Heterologous , Tumor Stem Cell Assay
18.
J Clin Invest ; 113(2): 175-9, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14722607

ABSTRACT

Stem cells generate the differentiated cell types within many organs throughout the lifespan of an organism and are thus ultimately responsible for the longevity of multicellular organisms. Therefore, senescence of stem cells must be prevented. Bmi1 is required for the maintenance of adult stem cells in some tissues partly because it represses genes that induce cellular senescence and cell death.


Subject(s)
Cellular Senescence , Nuclear Proteins/physiology , Proto-Oncogene Proteins/physiology , Repressor Proteins , Stem Cells/metabolism , Animals , Cell Line , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Gene Expression Regulation , Humans , Mice , Models, Biological , Mutation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Polycomb Repressive Complex 1 , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Tumor Suppressor Protein p14ARF/metabolism
19.
Nature ; 425(6961): 962-7, 2003 Oct 30.
Article in English | MEDLINE | ID: mdl-14574365

ABSTRACT

Stem cells persist throughout life by self-renewing in numerous tissues including the central and peripheral nervous systems. This raises the issue of whether there is a conserved mechanism to effect self-renewing divisions. Deficiency in the polycomb family transcriptional repressor Bmi-1 leads to progressive postnatal growth retardation and neurological defects. Here we show that Bmi-1 is required for the self-renewal of stem cells in the peripheral and central nervous systems but not for their survival or differentiation. The reduced self-renewal of Bmi-1-deficient neural stem cells leads to their postnatal depletion. In the absence of Bmi-1, the cyclin-dependent kinase inhibitor gene p16Ink4a is upregulated in neural stem cells, reducing the rate of proliferation. p16Ink4a deficiency partially reverses the self-renewal defect in Bmi-1-/- neural stem cells. This conserved requirement for Bmi-1 to promote self-renewal and to repress p16Ink4a expression suggests that a common mechanism regulates the self-renewal and postnatal persistence of diverse types of stem cell. Restricted neural progenitors from the gut and forebrain proliferate normally in the absence of Bmi-1. Thus, Bmi-1 dependence distinguishes stem cell self-renewal from restricted progenitor proliferation in these tissues.


Subject(s)
Nervous System/cytology , Nervous System/metabolism , Neurons/cytology , Neurons/metabolism , Nuclear Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Repressor Proteins , Stem Cells/cytology , Stem Cells/metabolism , Animals , Apoptosis , Cell Differentiation , Cell Division , Cell Lineage , Cell Survival , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Mice , Mice, Inbred C57BL , Neural Crest/cytology , Neural Crest/metabolism , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Polycomb Repressive Complex 1 , Proto-Oncogene Proteins/deficiency , Proto-Oncogene Proteins/genetics
20.
Nature ; 423(6937): 302-5, 2003 May 15.
Article in English | MEDLINE | ID: mdl-12714971

ABSTRACT

A central issue in stem cell biology is to understand the mechanisms that regulate the self-renewal of haematopoietic stem cells (HSCs), which are required for haematopoiesis to persist for the lifetime of the animal. We found that adult and fetal mouse and adult human HSCs express the proto-oncogene Bmi-1. The number of HSCs in the fetal liver of Bmi-1-/- mice was normal. In postnatal Bmi-1-/- mice, the number of HSCs was markedly reduced. Transplanted fetal liver and bone marrow cells obtained from Bmi-1-/- mice were able to contribute only transiently to haematopoiesis. There was no detectable self-renewal of adult HSCs, indicating a cell autonomous defect in Bmi-1-/- mice. A gene expression analysis revealed that the expression of stem cell associated genes, cell survival genes, transcription factors, and genes modulating proliferation including p16Ink4a and p19Arf was altered in bone marrow cells of the Bmi-1-/- mice. Expression of p16Ink4a and p19Arf in normal HSCs resulted in proliferative arrest and p53-dependent cell death, respectively. Our results indicate that Bmi-1 is essential for the generation of self-renewing adult HSCs.


Subject(s)
Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Nuclear Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Repressor Proteins , Animals , Bone Marrow Cells/cytology , Bone Marrow Transplantation , Cell Division , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Gene Deletion , Gene Expression Regulation , Hematopoietic Stem Cell Transplantation , Humans , Liver/cytology , Liver/embryology , Mice , Models, Biological , Nuclear Proteins/genetics , Polycomb Repressive Complex 1 , Proto-Oncogene Mas , Proto-Oncogene Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tumor Suppressor Protein p14ARF/genetics , Tumor Suppressor Protein p14ARF/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...