Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 621, 2021 01 27.
Article in English | MEDLINE | ID: mdl-33504800

ABSTRACT

Self-repairable materials strive to emulate curable and resilient biological tissue; however, their performance is currently insufficient for commercialization purposes because mending and toughening are mutually exclusive. Herein, we report a carbonate-type thermoplastic polyurethane elastomer that self-heals at 35 °C and exhibits a tensile strength of 43 MPa; this elastomer is as strong as the soles used in footwear. Distinctively, it has abundant carbonyl groups in soft-segments and is fully amorphous with negligible phase separation due to poor hard-segment stacking. It operates in dual mechano-responsive mode through a reversible disorder-to-order transition of its hydrogen-bonding array; it heals when static and toughens when dynamic. In static mode, non-crystalline hard segments promote the dynamic exchange of disordered carbonyl hydrogen-bonds for self-healing. The amorphous phase forms stiff crystals when stretched through a transition that orders inter-chain hydrogen bonding. The phase and strain fully return to the pre-stressed state after release to repeat the healing process.

2.
Biomedicines ; 8(11)2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33187133

ABSTRACT

In this study, we report the hyaluronate dot (dHA) with multiligand targeting ability and a photosensitizing antitumor model drug for treating metastatic bone tumors. Here, the dHA was chemically conjugated with alendronate (ALN, as a specific ligand to bone), cyclic arginine-glycine-aspartic acid (cRGD, as a specific ligand to tumor integrin αvß3), and photosensitizing chlorin e6 (Ce6, for photodynamic tumor therapy), denoted as (ALN/cRGD)@dHA-Ce6. These dots thus prepared (≈10 nm in diameter) enabled extensive cellular interactions such as hyaluronate (HA)-mediated CD44 receptor binding, ALN-mediated bone targeting, and cRGD-mediated tumor integrin αvß3 binding, thus improving their tumor targeting efficiency, especially for metastasized MDA-MB-231 tumors. As a result, these dots improved the tumor targeting efficiency and tumor cell permeability in a metastatic in vivo tumor model. Indeed, we demonstrated that (ALN/cRGD)@dHA-Ce6 considerably increased photodynamic tumor ablation, the extent of which is superior to that of the tumor ablation of dot systems with single or double ligands. These results indicate that dHA with multiligand can provide an effective treatment strategy for metastatic bone tumors.

3.
Pharmaceutics ; 12(4)2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32316679

ABSTRACT

In this study, we fabricated tumor-homing pH-sensitive extracellular vesicles for efficient tumor treatment. These vesicles were prepared using extracellular vesicles (EVs; BTEVs extracted from BT-474 tumor cells or SKEVs extracted from SK-N-MC tumor cells), hyaluronic acid grafted with 3-(diethylamino)propylamine (HDEA), and doxorubicin (DOX, as a model antitumor drug). Consequently, HDEA/DOX anchored EVs (HDEA@EVs) can interact with origin tumor cells owing to EVs' homing ability to origin cells. Therefore, EV blends of HDEA@BTEVs and HDEA@SKEVs demonstrate highly increased cellular uptake in both BT-474 and SK-N-MC cells: HDEA@BTEVs for BT-474 tumor cells and HDEA@SKEVs for SK-N-MC tumor cells. Furthermore, the hydrophobic HDEA present in HDEA@EVs at pH 7.4 can switch to hydrophilic HDEA at pH 6.5 as a result of acidic pH-induced protonation of 3-(diethylamino)propylamine (DEAP) moieties, resulting in an acidic pH-activated EVs' disruption, accelerated release of encapsulated DOX molecules, and highly increased cell cytotoxicity. However, EV blends containing pH-insensitive HA grafted with deoxycholic acid (HDOC) (HDOC@BTEVs and HDOC@SKEVs) showed less cell cytotoxicity for both BT-474 and SK-N-MC tumor cells, because they did not act on EVs' disruption and the resulting DOX release. Consequently, the use of these tumor-homing pH-sensitive EV blends may result in effective targeted therapies for various tumor cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...