Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Metabolism ; 141: 155399, 2023 04.
Article in English | MEDLINE | ID: mdl-36642114

ABSTRACT

BACKGROUND: Production rates of the short-chain fatty acids (SCFA) acetate, propionate, and butyrate, which are beneficial metabolites of the intestinal microbiota, are difficult to measure in humans due to inaccessibility of the intestine to perform measurements, and the high first-pass metabolism of SCFAs in colonocytes and liver. We developed a stable tracer pulse approach to estimate SCFA whole-body production (WBP) in the accessible pool representing the systemic circulation and interstitial fluid. Compartmental modeling of plasma enrichment data allowed us to additionally calculate SCFA kinetics and pool sizes in the inaccessible pool likely representing the intestine with microbiota. We also studied the effects of aging and the presence of Chronic Obstructive Pulmonary Disease (COPD) on SCFA kinetics. METHODS: In this observational study, we designed a two-compartmental model to determine SCFA kinetics in 31 young (20-29 y) and 71 older (55-87 y) adults, as well as in 33 clinically stable patients with moderate to very severe COPD (mean (SD) FEV1, 46.5 (16.2)% of predicted). Participants received in the fasted state a pulse containing stable tracers of acetate, propionate, and butyrate intravenously and blood was sampled four times over a 30 min period. We measured tracer-tracee ratios by GC-MS and used parameters obtained from two-exponential curve fitting to calculate non-compartmental SCFA WBP and perform compartmental analysis. Statistics were done by ANCOVA. RESULTS: Acetate, propionate, and butyrate WBP and fluxes between the accessible and inaccessible pools were lower in older than young adults (all q < 0.0001). Moreover, older participants had lower acetate (q < 0.0001) and propionate (q = 0.019) production rates in the inaccessible pool as well as smaller sizes of the accessible and inaccessible acetate pools (both q < 0.0001) than young participants. WBP, compartmental SCFA kinetics, and pool sizes did not differ between COPD patients and older adults (all q > 0.05). Overall and independent of the group studied, calculated production rates in the inaccessible pool were on average 7 (acetate), 11 (propionate), and 16 (butyrate) times higher than non-compartmental WBP, and sizes of inaccessible pools were 24 (acetate), 31 (propionate), and 55 (butyrate) times higher than sizes of accessible pools (all p < 0.0001). CONCLUSION: Non-compartmental production measurements of SCFAs in the accessible pool (i.e. systemic circulation) substantially underestimate the SCFA production in the inaccessible pool, which likely represents the intestine with microbiota, as assessed by compartmental analysis.


Subject(s)
Fatty Acids, Volatile , Propionates , Young Adult , Humans , Aged , Acetates/metabolism , Butyrates , Aging
2.
Article in English | MEDLINE | ID: mdl-33170781

ABSTRACT

Although it seems intuitive to address the issue of reduced plantar cutaneous feedback by augmenting it, many approaches have adopted compensatory sensory cues, such as tactile input from another part of the body, for multiple reasons including easiness and accessibility. The efficacy of the compensatory approaches might be limited due to the cognitive involvement to interpret such compensatory sensory cues. The objective of this study is to test the hypothesis that the plantar cutaneous augmentation is more effective than providing compensatory sensory cues on improving postural regulation, when plantar cutaneous feedback is reduced. In our experiments, six healthy human subjects were asked to maintain their balance on a lateral balance board for as long as possible, until the balance board contacted the ground, for 240 trials with five interventions. During these experiments, subjects were instructed to close their eyes to increase dependency on plantar cutaneous feedback for balancing. Foam pad was also added on the board to emulate the condition of reduced plantar cutaneous feedback. The effects of tactile augmentation from the foot sole or the palm on standing balance were tested by applying transcutaneous electrical stimulation on calcaneal or ulnar nerve during the balance board tests, with and without a cognitively-challenging counting task. Experimental results indicate that the plantar cutaneous augmentation was effective on improving balance only with cognitive load, while the palmar cutaneous augmentation was effective only without cognitive load. This result suggests that the location of sensory augmentation should be carefully determined according to the attentional demands.


Subject(s)
Postural Balance , Touch , Cognition , Foot , Humans , Skin
3.
J Clin Med ; 9(2)2020 Feb 24.
Article in English | MEDLINE | ID: mdl-32102421

ABSTRACT

Reduced balance function has been observed during balance challenging conditions in the chronic obstructive pulmonary disease (COPD) population and is associated with an increased risk of falls. This study aimed to examine postural balance during quiet standing with eyes open and functional balance in a heterogeneous group of COPD and non-COPD (control) subjects, and to identify risk factors underlying balance impairment using a large panel of methods. In COPD and control subjects, who were mostly overweight and sedentary, postural and functional balance were assessed using center-of-pressure displacement in anterior-posterior (AP) and medio-lateral (ML) directions, and the Berg Balance Scale (BBS), respectively. COPD showed 23% greater AP sway velocity (p = 0.049). The presence of oxygen therapy, fat mass, reduced neurocognitive function, and the presence of (pre)diabetes explained 71% of the variation in postural balance in COPD. Transcutaneous oxygen saturation, a history of exacerbation, and gait speed explained 83% of the variation in functional balance in COPD. Neurocognitive dysfunction was the main risk factor for postural balance impairment in the control group. This suggests that specific phenotypes of COPD patients can be identified based on their type of balance impairment.

SELECTION OF CITATIONS
SEARCH DETAIL
...