Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(37): 43656-43666, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37672801

ABSTRACT

Anode-free sodium-metal batteries (AFSMBs) are promising candidates for maximizing energy density and minimizing cost and safety hazards in the absence of metallic sodium during cell assembly. The practical implementation of AFSMBs is hindered by the low cycling stability of Na-metal plating and stripping, particularly under high areal capacities, due to unstable solid electrolyte interphase (SEI) layer formation with electrolyte decomposition and inactive dead Na formation. Here, we proposed an electroconductive electrolyte system consisting of liquid electrolytes that accept electrons at a certain energy level and form electronically conductive and solid electrolytes that prevent internal short circuit through low electronic conductivity. The electron acceptability and high electronic conductivity of the liquid electrolyte can suppress the irreversible electron transfer with electrolyte decomposition and reutilize the inactive dead metal, respectively. The functions of the system were demonstrated using a sodium biphenyl liquid electrolyte-NASICON solid electrolyte in a seawater battery (SWB) system, which features an infinite sodium source. The anode-free SWB cells achieved a high Coulombic efficiency of ≥99.9% for over 60 cycles at a high areal capacity of ∼24 mAh/cm2. This study provides insight into the Na plating/stripping properties in anode-free systems and proposes a significant strategy for improving the reversibility of metal anodes for various battery systems with solid electrolytes.

3.
Biology (Basel) ; 11(1)2022 Jan 03.
Article in English | MEDLINE | ID: mdl-35053066

ABSTRACT

We report 37 mitochondrial genome (mitogenome) sequences of Bombyx mori strains (Lepidoptera: Bombycidae) and four of B. mandarina individuals, each preserved and collected, respectively, in South Korea. These mitogenome sequences combined with 45 public data showed a substantial genetic reduction in B. mori strains compared to the presumed ancestor B. mandarina, with the highest diversity detected in the Chinese origin B. mori. Chinese B. mandarina were divided into northern and southern groups, concordant to the Qinling-Huaihe line, and the northern group was placed as an immediate progenitor of monophyletic B. mori strains in phylogenetic analyses, as has previously been detected. However, one individual that was in close proximity to the south Qinling-Huaihe line was exceptional, belonging to the northern group. The enigmatic South Korean population of B. mandarina, which has often been regarded as a closer genetic group to Japan, was most similar to the northern Chinese group, evidencing substantial gene flow between the two regions. Although a substantial genetic divergence is present between B. mandarina in southern China and Japan, a highly supported sister relationship between the two regional populations may suggest the potential origin of Japanese B. mandarina from southern China instead of the Korean peninsula.

4.
Biomedicines ; 9(5)2021 05 02.
Article in English | MEDLINE | ID: mdl-34063261

ABSTRACT

Statin derivatives traditionally have been used for the treatment of hyperlipidemia, but recent studies have shown their ability to regulate bone metabolism and promote bone growth. In this study, simvastatin (Sim), a new therapeutic candidate for bone regeneration, was combined with graphene oxide (GO), which has recently attracted much interest as a drug delivery method, to produce a compound substance effective for bone regeneration. To create a stable and homogenous complex with Sim, GO was modified with polyethylenimine, and the effect of modification was analyzed using Fourier transform infrared spectroscopy, zeta potential, and cytotoxicity testing. More specifically, the osteogenic differentiation potential expected by the combination of the two effective materials for osteogenic differentiation, GO and Sim, was evaluated in mesenchymal stem cells. Compared with control groups with GO and Sim used separately, the GO/Sim complex showed excellent osteogenic differentiation properties, with especially enhanced effects in the complex containing < 1 µM Sim.

5.
Food Sci Nutr ; 7(2): 537-546, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30847132

ABSTRACT

Clove has been shown to extend the shelf life of various foods. This study investigated whether it can prolong the shelf life of kimchi paste. Clove powder at concentrations of 0%, 0.5%, 1%, 1.5%, and 2% was added to kimchi paste, which was then sealed and stored at 10°C for 20 days. Changes in microbial counts, gas composition, sugar and organic acid contents, pH, titratable acidity, and reducing sugar content were evaluated. Adding clove powder inhibited the growth of total aerobic and lactic acid bacteria and delayed changes in O2 and CO 2 concentration and sugar and organic acid contents. It also slowed the decrease in pH, increase in titratable acidity, and changes in reducing sugar content. These results indicate that clove powder effectively prolongs the quality attributes and thus extends the shelf life of kimchi paste.

6.
Adv Mater ; 31(20): e1804936, 2019 May.
Article in English | MEDLINE | ID: mdl-30589114

ABSTRACT

Harvesting energy from natural resources is of significant interest because of their abundance and sustainability. Seawater is the most abundant natural resource on earth, covering two-thirds of the surface. The rechargeable seawater battery is a new energy storage platform that enables interconversion of electrical energy and chemical energy by tapping into seawater as an infinite medium. Here, an overview of the research and development activities of seawater batteries toward practical applications is presented. Seawater batteries consist of anode and cathode compartments that are separated by a Na-ion conducting membrane, which allows only Na+ ion transport between the two electrodes. The roles and drawbacks of the three key components, as well as the development concept and operation principles of the batteries on the basis of previous reports are covered. Moreover, the prototype manufacturing lines for mass production and automation, and potential applications, particularly in marine environments are introduced. Highlighting the importance of engineering the cell components, as well as optimizing the system level for a particular application and thereby successful market entry, the key issues to be resolved are discussed, so that the seawater battery can emerge as a promising alternative to existing rechargeable batteries.

7.
ChemSusChem ; 9(1): 42-9, 2016 Jan 08.
Article in English | MEDLINE | ID: mdl-26611916

ABSTRACT

As existing battery technologies struggle to meet the requirements for widespread use in the field of large-scale energy storage, novel concepts are urgently needed concerning batteries that have high energy densities, low costs, and high levels of safety. Here, a novel eco-friendly energy storage system (ESS) using seawater and an ionic liquid is proposed for the first time; this represents an intermediate system between a battery and a fuel cell, and is accordingly referred to as a hybrid rechargeable cell. Compared to conventional organic electrolytes, the ionic liquid electrolyte significantly enhances the cycle performance of the seawater hybrid rechargeable system, acting as a very stable interface layer between the Sn-C (Na storage) anode and the NASICON (Na3 Zr2 Si2 PO12) ceramic solid electrolyte, making this system extremely promising for cost-efficient and environmentally friendly large-scale energy storage.


Subject(s)
Electric Power Supplies , Electrolytes/chemistry , Ionic Liquids/chemistry , Seawater/chemistry , Ceramics , Electrochemistry , Electrodes , Microscopy, Electron, Scanning , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...