Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Sci Rep ; 13(1): 5934, 2023 04 12.
Article in English | MEDLINE | ID: mdl-37045856

ABSTRACT

The identification of abnormal findings manifested in retinal fundus images and diagnosis of ophthalmic diseases are essential to the management of potentially vision-threatening eye conditions. Recently, deep learning-based computer-aided diagnosis systems (CADs) have demonstrated their potential to reduce reading time and discrepancy amongst readers. However, the obscure reasoning of deep neural networks (DNNs) has been the leading cause to reluctance in its clinical use as CAD systems. Here, we present a novel architectural and algorithmic design of DNNs to comprehensively identify 15 abnormal retinal findings and diagnose 8 major ophthalmic diseases from macula-centered fundus images with the accuracy comparable to experts. We then define a notion of counterfactual attribution ratio (CAR) which luminates the system's diagnostic reasoning, representing how each abnormal finding contributed to its diagnostic prediction. By using CAR, we show that both quantitative and qualitative interpretation and interactive adjustment of the CAD result can be achieved. A comparison of the model's CAR with experts' finding-disease diagnosis correlation confirms that the proposed model identifies the relationship between findings and diseases similarly as ophthalmologists do.


Subject(s)
Deep Learning , Eye Diseases , Humans , Algorithms , Neural Networks, Computer , Fundus Oculi , Retina/diagnostic imaging
2.
Sci Rep ; 12(1): 12218, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35851285

ABSTRACT

Deep learning-based approaches in histopathology can be largely divided into two categories: a high-level approach using an end-to-end model and a low-level approach using feature extractors. Although the advantages and disadvantages of both approaches are empirically well known, there exists no scientific basis for choosing a specific approach in research, and direct comparative analysis of the two approaches has rarely been performed. Using the Cancer Genomic Atlas (TCGA)-based dataset, we compared these two different approaches in microsatellite instability (MSI) prediction and analyzed morphological image features associated with MSI. Our high-level approach was based solely on EfficientNet, while our low-level approach relied on LightGBM and multiple deep learning models trained on publicly available multiclass tissue, nuclei, and gland datasets. We compared their performance and important image features. Our high-level approach showed superior performance compared to our low-level approach. In both approaches, debris, lymphocytes, and necrotic cells were revealed as important features of MSI, which is consistent with clinical knowledge. Then, during qualitative analysis, we discovered the weaknesses of our low-level approach and demonstrated that its performance can be improved by using different image features in a complementary way. We performed our study using open-access data, and we believe this study can serve as a useful basis for discovering imaging biomarkers for clinical application.


Subject(s)
Deep Learning , Neoplasms , Humans , Microsatellite Instability , Microsatellite Repeats , Neoplasms/genetics
3.
Sci Rep ; 11(1): 2876, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33536550

ABSTRACT

There have been substantial efforts in using deep learning (DL) to diagnose cancer from digital images of pathology slides. Existing algorithms typically operate by training deep neural networks either specialized in specific cohorts or an aggregate of all cohorts when there are only a few images available for the target cohort. A trade-off between decreasing the number of models and their cancer detection performance was evident in our experiments with The Cancer Genomic Atlas dataset, with the former approach achieving higher performance at the cost of having to acquire large datasets from the cohort of interest. Constructing annotated datasets for individual cohorts is extremely time-consuming, with the acquisition cost of such datasets growing linearly with the number of cohorts. Another issue associated with developing cohort-specific models is the difficulty of maintenance: all cohort-specific models may need to be adjusted when a new DL algorithm is to be used, where training even a single model may require a non-negligible amount of computation, or when more data is added to some cohorts. In resolving the sub-optimal behavior of a universal cancer detection model trained on an aggregate of cohorts, we investigated how cohorts can be grouped to augment a dataset without increasing the number of models linearly with the number of cohorts. This study introduces several metrics which measure the morphological similarities between cohort pairs and demonstrates how the metrics can be used to control the trade-off between performance and the number of models.


Subject(s)
Datasets as Topic , Deep Learning , Image Processing, Computer-Assisted/methods , Neoplasms/diagnosis , Cohort Studies , Humans , Neoplasms/pathology
4.
Clin Cancer Res ; 27(3): 719-728, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33172897

ABSTRACT

PURPOSE: Gastric cancer remains the leading cause of cancer-related deaths in Northeast Asia. Population-based endoscopic screenings in the region have yielded successful results in early detection of gastric tumors. Endoscopic screening rates are continuously increasing, and there is a need for an automatic computerized diagnostic system to reduce the diagnostic burden. In this study, we developed an algorithm to classify gastric epithelial tumors automatically and assessed its performance in a large series of gastric biopsies and its benefits as an assistance tool. EXPERIMENTAL DESIGN: Using 2,434 whole-slide images, we developed an algorithm based on convolutional neural networks to classify a gastric biopsy image into one of three categories: negative for dysplasia (NFD), tubular adenoma, or carcinoma. The performance of the algorithm was evaluated by using 7,440 biopsy specimens collected prospectively. The impact of algorithm-assisted diagnosis was assessed by six pathologists using 150 gastric biopsy cases. RESULTS: Diagnostic performance evaluated by the AUROC curve in the prospective study was 0.9790 for two-tier classification: negative (NFD) versus positive (all cases except NFD). When limited to epithelial tumors, the sensitivity and specificity were 1.000 and 0.9749. Algorithm-assisted digital image viewer (DV) resulted in 47% reduction in review time per image compared with DV only and 58% decrease to microscopy. CONCLUSIONS: Our algorithm has demonstrated high accuracy in classifying epithelial tumors and its benefits as an assistance tool, which can serve as a potential screening aid system in diagnosing gastric biopsy specimens.


Subject(s)
Deep Learning , Gastric Mucosa/pathology , Image Interpretation, Computer-Assisted/methods , Pathologists/statistics & numerical data , Stomach Neoplasms/diagnosis , Adult , Aged , Aged, 80 and over , Biopsy/statistics & numerical data , Feasibility Studies , Female , Gastric Mucosa/diagnostic imaging , Gastroscopy/statistics & numerical data , Humans , Image Interpretation, Computer-Assisted/statistics & numerical data , Male , Middle Aged , Observer Variation , Prospective Studies , Retrospective Studies , Sensitivity and Specificity , Stomach Neoplasms/pathology
5.
J Neurogenet ; 33(3): 179-189, 2019 09.
Article in English | MEDLINE | ID: mdl-31172848

ABSTRACT

The way in which the central nervous system (CNS) governs animal movement is complex and difficult to solve solely by the analyses of muscle movement patterns. We tackle this problem by observing the activity of a large population of neurons in the CNS of larval Drosophila. We focused on two major behaviors of the larvae - forward and backward locomotion - and analyzed the neuronal activity related to these behaviors during the fictive locomotion that occurs spontaneously in the isolated CNS. We expressed a genetically-encoded calcium indicator, GCaMP and a nuclear marker in all neurons and then used digitally scanned light-sheet microscopy to record (at a fast frame rate) neural activities in the entire ventral nerve cord (VNC). We developed image processing tools that automatically detected the cell position based on the nuclear staining and allocate the activity signals to each detected cell. We also applied a machine learning-based method that we recently developed to assign motor status in each time frame. Our experimental procedures and computational pipeline enabled systematic identification of neurons that showed characteristic motor activities in larval Drosophila. We found cells whose activity was biased toward forward locomotion and others biased toward backward locomotion. In particular, we identified neurons near the boundary of the subesophageal zone (SEZ) and thoracic neuromeres, which were strongly active during an early phase of backward but not forward fictive locomotion.


Subject(s)
Central Nervous System/physiology , Drosophila/physiology , Locomotion/physiology , Neural Pathways/physiology , Neurons/physiology , Animals , Larva , Machine Learning , Models, Neurological
6.
Sci Rep ; 8(1): 10307, 2018 07 09.
Article in English | MEDLINE | ID: mdl-29985473

ABSTRACT

Rhythmic animal behaviors are regulated in part by neural circuits called the central pattern generators (CPGs). Classifying neural population activities correlated with body movements and identifying the associated component neurons are critical steps in understanding CPGs. Previous methods that classify neural dynamics obtained by dimension reduction algorithms often require manual optimization which could be laborious and preparation-specific. Here, we present a simpler and more flexible method that is based on the pre-trained convolutional neural network model VGG-16 and unsupervised learning, and successfully classifies the fictive motor patterns in Drosophila larvae under various imaging conditions. We also used voxel-wise correlation mapping to identify neurons associated with motor patterns. By applying these methods to neurons targeted by 5-HT2A-GAL4, which we generated by the CRISPR/Cas9-system, we identified two classes of interneurons, termed Seta and Leta, which are specifically active during backward but not forward fictive locomotion. Optogenetic activation of Seta and Leta neurons increased backward locomotion. Conversely, thermogenetic inhibition of 5-HT2A-GAL4 neurons or application of a 5-HT2 antagonist decreased backward locomotion induced by noxious light stimuli. This study establishes an accelerated pipeline for activity profiling and cell identification in larval Drosophila and implicates the serotonergic system in the modulation of backward locomotion.


Subject(s)
Drosophila Proteins/genetics , Drosophila/metabolism , Locomotion , Motor Neurons/metabolism , Receptor, Serotonin, 5-HT2A/genetics , Animals , CRISPR-Cas Systems/genetics , Calcium/metabolism , Drosophila/growth & development , Drosophila Proteins/metabolism , Gene Editing , Larva/metabolism , Light , Locomotion/drug effects , Locomotion/radiation effects , Optogenetics/methods , Receptor, Serotonin, 5-HT2A/metabolism , Serotonin 5-HT2 Receptor Antagonists , Temperature , Transcription Factors/genetics
7.
Ultrason Sonochem ; 22: 429-36, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24844440

ABSTRACT

A hybrid advanced oxidation process combining sonochemistry (US) and electrochemistry (EC) for the batch scale degradation of ibuprofen was developed. The performance of this hybrid reactor system was evaluated by quantifying on the degradation of ibuprofen under the variation in electrolytes, frequency, applied voltage, ultrasonic power density and temperature in aqueous solutions with a platinum electrode. Among the methods examined (US, EC and US/EC), the hybrid method US/EC resulted 89.32%, 81.85% and 88.7% degradations while using NaOH, H2SO4 and deionized water (DI), respectively, with a constant electrical voltages of 30V, an ultrasound frequency of 1000kHz, and a power density of 100WL(-1) at 298K in 1h. The degradation was established to follow pseudo first order kinetics. In addition, energy consumption and energy efficiencies were also calculated. The probable mechanism for the anodic oxidation of ibuprofen at a platinum electrode was also postulated.


Subject(s)
Ibuprofen/chemistry , Ultrasonics , Electrochemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...