Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(11): e0294657, 2023.
Article in English | MEDLINE | ID: mdl-38019828

ABSTRACT

A saturated iron-core type superconducting fault current limiter (SI-SFCL) can effectively restrict the magnitude of the fault current and alleviate the strain on circuit breakers in DC power systems. Design of a superconducting coil (SC), which is one of the key tasks in the SI-SFCL design, requires guaranteeing a sufficient magnetic field, ensuring optimization of the shape and size, minimizing the wire cost, and satisfying the safety and stability of operation. Generally, finite element method (FEM) is used to calculate and evaluate the operating characteristics of SCs, from which it is possible to determine their optimal design parameters. When the coil is complex and large, the simulation time may range from hours to days, and if input parameters change even slightly, the simulations have to be redone from scratch. Recent advances in deep learning represent the ability to be effective for modeling and optimizing complex problems from training data or in real-time. In this paper, we presented a combination of the FEM simulation and deep Q-network (DQN) algorithm to optimize the SC design of a lab-scale SI-SFCL for a DC power system. The detailed design process and options for the SC of SI-SFCL were proposed. In order to analyze the characteristics related to the electromagnetic properties and operational features of the SC, a 3D FEM model was developed. Then, a DQN model was constructed and integrated with the FEM simulation for training and optimizing the design parameters of the SC in real-time. The obtained results of this study have the potential to effectively optimize the design parameters of large-scale SI-SFCL development for high-voltage DC power systems.


Subject(s)
Algorithms , Superconductivity , Finite Element Analysis , Computer Simulation , Magnetic Fields
2.
Chemosphere ; 177: 157-166, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28288424

ABSTRACT

This study evaluated the feasibility of using biochars produced from three types of crop residues for immobilizing Pb and As and their effects on the abundance of microbial community in contaminated lowland paddy (P-soil) and upland (U-soil) agricultural soils. Biochars were produced from umbrella tree [Maesopsis eminii] wood bark [WB], cocopeat [CP], and palm kernel shell [PKS] at 500 °C by slow pyrolysis at a heating rate of 10 °C min-1. Soils were incubated with 5% (w w-1) biochars at 25 °C and 70% water holding capacity for 45 d. The biochar effects on metal immobilization were evaluated by sequential extraction of the treated soil, and the microbial community was determined by microbial fatty acid profiles and dehydrogenase activity. The addition of WB caused the largest decrease in Pb in the exchangeable fraction (P-soil: 77.7%, U-soil: 91.5%), followed by CP (P-soil: 67.1%, U-soil: 81.1%) and PKS (P-soil: 9.1%, U-soil: 20.0%) compared to that by the control. In contrast, the additions of WB and CP increased the exchangeable As in U-soil by 84.6% and 14.8%, respectively. Alkalinity and high phosphorous content of biochars might be attributed to the Pb immobilization and As mobilization, respectively. The silicon content in biochars is also an influencing factor in increasing the As mobility. However, no considerable effects of biochars on the microbial community abundance and dehydrogenase activity were found in both soils.


Subject(s)
Agriculture , Bacteria/drug effects , Charcoal/chemistry , Crops, Agricultural/chemistry , Metals/chemistry , Soil Microbiology , Soil Pollutants/isolation & purification , Soil/chemistry , Environmental Pollution , Incineration , Soil Pollutants/analysis , Temperature
3.
Waste Manag ; 49: 204-211, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26860426

ABSTRACT

The fixed bed reaction of sewage sludge briquettes was investigated to evaluate the potential applications to gasification, combustion, or production of biochar as soil ameliorator. The reaction had two distinctive stages: ignition propagation and char oxidation. The ignition front of the sludge briquettes propagated at a lower speed, which significantly increased the stoichiometric ratio of overall combustion reaction and peak temperatures. The ignition front also had irregular shapes due to the channeling effects. During the char oxidation stage, the sludge ash agglomerated because of the slow reaction rate and increased CO2 formation. Because of low energy content in the product gas, the large briquettes were not favorable for syngas production. In addition, the low burning rates and ash agglomeration could cause problems in the operation of a grate-type furnace for combustion. However, the char accumulated above the ignition front had similar properties with that from pyrolysis under inert atmosphere. Therefore, the fixed bed reaction under partial oxidation conditions can be applied to produce biochar as soil ameliorator from the sludge briquettes without external heat supply.


Subject(s)
Charcoal/analysis , Sewage/chemistry , Waste Management/methods , Hot Temperature , Oxidation-Reduction , Refuse Disposal
4.
Bioresour Technol ; 155: 63-70, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24423650

ABSTRACT

Among many uses of rice straw, application of its biochar from pyrolysis to the soil is receiving greater interest for increased crop productivity and sequestration of CO2. This study investigated slow pyrolysis of rice straw at 300-700°C to characterize the yields and detailed composition of the biochar, bio-oil and non-condensable gases. Biochar was analyzed for pH, microscopic surface area and pore volume distribution. Although the mass yield for the organic fraction was only about 25% above 500°C, biochar was the primary product of pyrolysis containing 40% of energy and 45% of carbon from the straw. The utilization of by-products (bio-oil and gases) as energy resources was essential, since the sum of energy yield was about 60%. The gases could be burned to produce the heat for an auto-thermal pyrolysis process, but the heat balance was significantly influenced by the moisture content of the raw material.


Subject(s)
Biofuels , Charcoal/chemical synthesis , Oryza/chemistry , Plant Components, Aerial/chemistry , Calorimetry , Charcoal/chemistry , Hot Temperature , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning , Models, Chemical , Porosity , Time Factors
5.
Bioresour Technol ; 148: 196-201, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24047681

ABSTRACT

Application of biochar from biomass pyrolysis to soil is gaining greater interest; this can ameliorate the soil quality, reduce fertilizer consumption, and sequestrate carbon. This study compares the characteristics of biochar produced by slow pyrolysis at 500°C for agricultural residues: sugarcane bagasse, cocopeat, paddy straw, palm kernel shell (PKS) and umbrella tree. In the biochar yield, the influence of the inert and lignin contents was significant. The wood stem, bagasse and paddy straw had biochar yields of 24-28 wt.% from the organic fraction while cocopeat had 46 wt.%. The carbon content of biochar ranged from 84 wt.% to 89 wt.%, which corresponded to 43-63% of carbon in the biomass. The biochar from wood stem and bagasse had well-developed pores of various sizes with large surface areas. Although the surface area was significant, PKS biochar had dense matrix with few large pores. The elemental composition and pH of biochars were also compared.


Subject(s)
Biomass , Biotechnology/methods , Charcoal/chemistry , Temperature , Bioreactors , Porosity , Thermogravimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...