Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Allergy Asthma Immunol Res ; 14(4): 379-392, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35837822

ABSTRACT

PURPOSE: ω-5 gliadin is the major allergen that causes wheat-dependent exercise-induced anaphylaxis (WDEIA). Recently, a missing mutant wheat cultivar at 1B chromosome Glu-B3 and closely linked Gli-B1 loci was bred. This cultivar (ω5D) has a deficiency in ω-5 and γ-gliadins as well as some low-molecular-weight glutenins. We evaluated specific immunoglobulin E (sIgE) reactivity of the ω5D in WDEIA patients compared to wild-type cultivar. METHODS: Serum samples from 14 WDEIA and 7 classic wheat allergy patients were used to compare the allergenicity of ω5D and wild-type cultivars using immunoglobulin E immunoblotting, enzyme-linked immunosorbent assay (ELISA), and ImmunoCAP inhibition assays. RESULTS: Immunoblotting revealed that ω5D extracts had less sIgE binding to gliadins and glutenins in WDEIA sera than wild-type extracts. Immunoblot inhibition assay for gliadin sIgE reactivity also showed that ω5D gliadins had less allergenicity than wild-type gliadins. ELISA inhibition assay showed stronger allergenicity of gliadins than glutenins, although they had cross-reactivity. This assay also showed that the 50% inhibitory concentrations (IC50) of ω5D extracts against gliadin- or glutenin-sIgE reactivity were approximately 4-fold higher in WDEIA patients than those of wild-type extracts. The inhibition capacity of ω5D gliadins against recombinant ω-5 gliadin-sIgE reactivity was also lower in WDEIA patients than that of wild-type. CONCLUSIONS: The allergenicity of the ω5D cultivar is markedly lower for WDEIA patients in the sIgE inhibition tests. These results suggest that the ω5D cultivar may be a safe alternative for WDEIA patients.

2.
Plant Dis ; 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35380466

ABSTRACT

In Korea, most of the grafted watermelons are a fusion of bottle gourd (Lagenaria siceraria) as a rootstock and watermelon (Citrullus lanatus) as a scionstock (Lee et al., 2010). Currently, we have collected several samples from grafted watermelon displaying symptoms of yellowing, withered and wilting leaves. When the symptomatic stem was excised, browning vascular tissues were observed due to the colonization of fungal pathogen. From the samples obtained, 25 fungal isolates were identified as species of Fusarium. Among 25 isolates, 18 were identified as Fusarium oxysporum, four as Fusarium solani, and three as Fusarium equiseti (F. equiseti) . Initial assessment showed that one of the F. equiseti isolates (NIHHS 16-126) was highly virulent to rootstock. Interestingly, this is the first time F. equiseti has been identified pathogenic to grafted watermelon. NIHHS 16-126 isolate was collected from watermelon cultivation field around Buyeo-gun (36.25951°N, 126.92044°E) county. Disease incident was estimated to infect approximately 10% of the watermelon plants cultivated in this area. NIHHS 16-126 isolate was examined to confirm its identity. On potato dextrose agar, colonies appeared yellowish-brown while the aerial mycelium was whitish to peach in color. Macroconidia were relatively long (20.21 - 51.13 × 2.30 - 4.5 µm, n=50), comprise of 3-6 septa, curvature shape and its conidiophores were with monophialides. However, microconidia formation was not observed. These morphological characteristics resemble F. equiseti characters as described by Hyun (2019). For molecular identification, an internal transcribed spacer of ribosomal DNA (ITS-rDNA), elongation factor-1α (EF-1α), and beta-tubulin (ß-tub) genes were sequenced using primer pairs of ITS1/ITS4 (White et al., 1990), EF1-728F/EF1-986R (Glass and Donaldson 1995), and Bt2a/Bt2b (Carbone and Kohn 1999). BLASTN analysis revealed that ITS-rDNA (LC648248), EF-1α (LC648250), and ß-tub (LC648249) sequences were 99-100% identical to F. equiseti reference sequences (KF515650, KF747331, and KF747330) infected Avicennia marina in China (Lu 2014). Phylogenetic analysis of concatenated ITS-rDNA, EF-1α and ß-tub sequences showed that this isolate clustered in the same clade as F. equiseti, confirming its identity as F. equiseti. For the inoculation, roots of 12-days-old seedlings (watermelon and bottle gourd, n=10 each) were dipped in the conidia suspension (1x106 conidia/µL) for 30 min. Inoculated seedlings were planted in the soil before being transferred to the greenhouse (temperature; 30°C, daylight; 14 hours). Control plants were inoculated with sterile water. Results showed that after 21 days post-inoculation, all inoculated bottle gourd seedlings (n=10) wilted and eventually died. In contrast, none of the inoculated watermelons or control seedlings were affected. Re-isolation of three fungal isolates (infected root) showed that their morphology and gene markers sequence were identical to the original isolates thus fulfilled Koch's postulates. Bottle gourd is the most preferred rootstock for grafted watermelons among Korean farmers due to its ability to resist Fusarium spp. infection. Therefore, the identification of F. equiseti as a fungal that is pathogenic to rootstock is crucial information to manage fusarium wilt disease among grafted watermelon. To our knowledge, this is the first report confirming F. equiseti infection in grafted watermelon plants in Korea.

4.
Plant Dis ; 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34433312

ABSTRACT

Botryosphaeria dothidea (B. dothidea) is a fungal pathogen commonly associated with stem canker, dieback, and rot disease in a variety of woody plants worldwide (Dong and Guo, 2020). In Korea, B. dothidea was reported to cause a disease problem to serval crops such as apple and blueberry (Kim, 1995; Choi, 2011). In early 2020, a typical symptom resembling the stem rot disease was spotted to occur at a plumcot cultivation area around Wanju (35.827870, 127.030380) province, Korea. At the early stage of infection, a small blister appeared on the plumcot branch and stem. However, as the blister extended, a light brown canker was observed appeared on the infected area and in some cases a sticky sap oozed from the branch bark crack. If not managed or treated properly, all leaves beyond the infection site will turn brown, wilt, and the whole plumcot tree eventually dies. A survey in the affected area showed that approximately 5% of the plumcot trees were infected which cause up to 10% reduction in total production. To identify the causal agent, symptomatic tissues were excised and surface sterilized with 70% ethanol for 30 sec followed by 1% NaClO for 30 sec before rinsing with sterile water, thrice. The samples were then dried with a piece of filter paper and later air-dried before being placed on a potato dextrose agar (PDA). The PDA plates were then incubated at 25°C for 5 days with 12 hours light/dark cycles period. Among several fungal isolates obtained, four were selected for further analyses. Morphological identification revealed that the fungal conidia were hyaline, ovoid, fusiform (type that rarely form a septum) and unicellular with an average size of 18 - 20 µm × 4.5 -5.5 µm (n = 50). These morphological characters have a strong resemblance to B. dothidea that described by Slipper et al., (2004). For molecular identification, Internal transcribed spacer (ITS), beta-tubulin (ß-tubulin) and elongation factor 1 alpha (EF-1α) were amplified and sequenced using universal primer pairs ITS1/ITS4 (White et al., 1990), Bt2a/Bt2b (Glass and Donaldson, 1995) and EF1/EF2 (O'Donnell et al. 1998) respectively. Alignment analysis showed that ITS (LC602817), ß-tubulin (LC602820) and EF-1α (LC602821) sequences were 99-100% identical to the orthologous genes identified in B. dothidea infecting soybean in China [MW130133 (identity 537/536 bp), MW147482 (identity 394/394 bp) and MW147481 (identify 250/250 bp) respectively] (Chen et al. 2021). However, phylogenetic analysis of concatenated ITS, ß-tubulin and EF-1α genes sequence established the identity of these isolate as B. dothidea. Due to the 100% identical at the molecular level, isolate NIHHS 20-262 was selected as a representative for further analysis. For the pathogenicity test, fungal mycelium (via PDA plug) was used as a source of inoculum for both intact and detached plumcot stems trials. For the intact trial, mycelium was inoculated on the wounded spots of ten plumcot stems that grew at the NIHHS trial farm. Ten days post-inoculation (dpi), disease symptoms i.e. stem colour turn from greenish to dark brown was observed at the inoculated sites. For the detached trial, mycelium was inoculated on the wounded spots of ten detached plumcot stems. The inoculated stems were kept in a closed container to maintain 90% humidity before incubated at 25ºC in the dark. Interestingly, on the detached stems, disease symptoms (greenish colour turn to dark brown) were observed to appear seven days early compare to intact stems. A sterile PDA plug replacing fungal mycelium served as a negative control and the result shows no symptoms were observed on either intact or detached control stems. For consistency purposes, pathogenicity tests on intact stems were performed on three different plumcot trees, whereas three biological replicates for detached stems. Isolation and re-identification of two colonies from the infected sites (intact and detached stems) were attempted and the results obtained were identical to the original isolate, thus fulfilling Koch's postulates. Local farmers described this disease as a "certain death disease" in plumcot. Therefore, accurate identification of B. dothidea as the causal agent is critical for effective disease management to minimise qualitative and quantitative losses in the plumcot industry. Although has been reported to cause dieback disease in blueberry in Korea (Choi, 2011), to our knowledge, this is the first study to report B. dothidea causing stem rot diseases on the plumcot trees in Korea.

6.
Front Plant Sci ; 12: 724487, 2021.
Article in English | MEDLINE | ID: mdl-34975933

ABSTRACT

Past studies of plant disease and pest recognition used classification methods that presented a singular recognition result to the user. Unfortunately, incorrect recognition results may be output, which may lead to further crop damage. To address this issue, there is a need for a system that suggest several candidate results and allow the user to make the final decision. In this study, we propose a method for diagnosing plant diseases and identifying pests using deep features based on transfer learning. To extract deep features, we employ pre-trained VGG and ResNet 50 architectures based on the ImageNet dataset, and output disease and pest images similar to a query image via a k-nearest-neighbor algorithm. In this study, we use a total of 23,868 images of 19 types of hot-pepper diseases and pests, for which, the proposed model achieves accuracies of 96.02 and 99.61%, respectively. We also measure the effects of fine-tuning and distance metrics. The results show that the use of fine-tuning-based deep features increases accuracy by approximately 0.7-7.38%, and the Bray-Curtis distance achieves an accuracy of approximately 0.65-1.51% higher than the Euclidean distance.

7.
Mycobiology ; 48(5): 418-422, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-33177921

ABSTRACT

In 2016, a cercosporoid fungus was found from leaf spot symptoms on melon in Korea. The fungus isolated from the plant was identified based on morphological characteristics and sequence analyses of five genes (ITS rDNA, translation elongation factor 1-α, actin, calmodulin, and histone H3). The fungal isolate was found to be pathogenic to melon. The results confirm that the fungus associated with leaf spot on melon was Cercospora cf. flagellaris. This is the first report of Cercospora cf. flagellaris causing Cercospora leaf spot on melon in Korea.

8.
Plant Dis ; 2020 Sep 29.
Article in English | MEDLINE | ID: mdl-32990518

ABSTRACT

Plumcot is an interspecific hybrid product between Japanese plums (Prunus salicina) and apricots (Prunus armeniaca) obtained by the NIHHS, Korea in 1999 [1]. At the early of 2017, black spots-like symptoms were observed on plumcot fruits and leaves at cultivation areas in Naju (34.965595, 126.665853) province. Further investigation shows that approximately 60% of the plumcot leaves in the affected orchard were infected, which caused 40% total production loss. At the early stage of infection, disease symptoms appear as small, angular and water-soaked spots and develop into circular brown spots at the later stages of infection. As the disease progresses, the leaf tissues around the spots became yellow and the lesions enlarged. When the adjacent lesions merged and the necrotic tissues fall off, shot-hole symptoms appear on the leaves. To identify the causal agent of this disease, infected leaf tissues were excised and surface-sterilized with 1% NaOCl for 30 secs prior to rinsing with sterile water, thrice . Tissue samples were then placed in sterile water (0.5 mL) for 5 min before its aliquots were streaked onto Luria-Bertani (LB) agar. Plates then were incubated at 28°C. To obtain pure colonies, bacteria were re-streak into a new LB agar and colonies showing typical Xanthomonas spp. morphology (i.e. convex, smooth, yellow, and mucoid) were subjected to Gram staining assay. For molecular identification, 16S ribosomal DNA (16S-rDNA) and gyrase B (gyrB) genes were amplified using a 9F/1512r and UP-1/UP-2Sr primers [2,3] respectively from 5 gram-negative isolates. PCR products were sequenced and analysed using BLASTN. Result shows that 16S-rDNA and gyrB genes are 99-100% identical to a similar genomic region of Xanthomonas arboricola pv. pruni (Xap) isolated in almond (MK156163), peach (MG049922) and apricot (KX950802) respectively [4,5,6]. 16S-rDNA and gyrB gene sequences were deposited in the GenBank (LC485472 and LC576824), whereas pathogen isolate was deposited into Korean Agricultural Culture Collection (KACC19949). Pathogenicity test was performed using Xap bacterial suspension (108 cfu/mL) inoculated on the abaxial and adaxial surface of plumcot detached leaves. For inoculation, 10 healthy young leaves were used whereas, 5 young leaves mock-inoculated with sterile LB broth were used as a control. Both leaf samples were kept in a closed container to maintain 100% humidity before being incubated at 25°C. The water-soaked symptoms were observed visually on the inoculated leaves 2 to 3 days post-inoculation. No water-soaked symptoms were observed on the control leaves. Morphology and sequences of molecular markers used showed that the 3 bacterial colonies re-isolated from the inoculated leaves were identical to the original isolate, fulfilling Koch's postulate. Pathogenicity tests were repeated twice and the results obtained were consistent with the first experiment. As a new variety of stone fruit cultivated in Korea, information about pathogens and registered agrochemicals to control disease outbreak in plumcot are still limited. Therefore, the identification of Xap as a causal agent to the black spot disease is critical for the development of disease management strategies and to identify appropriate agrochemicals to control the occurrence of this disease in the field. To our knowledge, this is the first report of Xap as a causal agent to the shot-hole disease on the plumcot in Korea.

9.
Mycobiology ; 48(4): 321-325, 2020 Jun 02.
Article in English | MEDLINE | ID: mdl-32952415

ABSTRACT

A Colletotrichum species was isolated from leaves of Cymbidium exhibiting symptoms of anthracnose. In this study, the isolates obtained were identified based on recent taxonomic approaches for the genus Colletotrichum. The identity of the causal pathogen was confirmed using morphological data and phylogenetic analysis of combined multi-gene dataset (internal transcribed spacer, glyceraldehyde 3-phosphate dehydrogenase, chitin synthase-1, actin, histone3, beta-tubulin, and calmodulin). Pathogenicity testing revealed that the isolates were pathogenic to Cymbidium. Based on these results, the fungal pathogen occurring on Cymbidium orchids was identified as Colletotrichum cymbidiicola, which is a newly recorded species in Korea.

10.
Plant Dis ; 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32967561

ABSTRACT

Chinese cabbage (Brassica rapa L.) is one of the most important vegetables in Korea due to its role as the main ingredient for the making of Kimchi. In June 2014, disease symptoms of leaves wilt, dry, and drop off on Chinese cabbage were observed in a Chinese cabbage farm located at Taebeak (37°26'50.7"N 128°95'50.0"E), Gangwon province, Korea. This disease was observed on approximately 35% of the plants in the field, causing an almost 10% decrease in total production. At the early stage of infection, the color at the edge of the plant foliage changed from green to yellow. As the disease progressed, infected leaves wilted, dried off, and detached from the plant. Soft rot that occurred at the base of the leaf stem and root tissues caused the infected leaves to dry and fell off the plant. To identify the causal agent, a small piece of infected leaf tissues was sterilized with 1% sodium hypochlorite solution for 1 min and rinsed with sterile water before it was transferred onto potato dextrose agar (PDA) media. The plates were then incubated at 25°C for 10 days in the dark. Fungal colonies grown on PDA media were of white-creamy in color with an abundance of mycelia and later develop into black color due to the formation of microsclerotia embedded in the media. Microscopic examination showed conidiophores and phialides were both appeared in a verticillate arrangement, whereas conidia were hyaline, smooth-walled, and ellipsoidal to oval with average size 5.4×2.5 µm (n=100). Microsclerotia appeared in elongate to an irregularly spherical shape and greatly variable in size. The morphological attributes of the fungal isolate described above were comparable to the characteristics of Verticillium dahliae Kleb. (V. dahliae) described by Hawksworth and Talboys (1970), and V. dahliae isolated from Chinese cabbage in Japan reported in Kishi (1998). Pathogenicity test was performed by soaking twelve individual Chinese cabbage seedlings for 15 min into fungal pathogen conidial suspension (1x106 conidium/ml) before transferred into soil tray. The same number of non-inoculated seedlings on the soil tray was used as a control. Inoculated and control plants were then covered with a plastic bag for 24 hours to maintain high humidity before transferred into the greenhouse (25°C). Seven days post-inoculation (dpi), treated plant leaves turned yellow, and soft rot was observed. At 10-dpi, plant leaf tissues dried off and severe soft rot occurred. Pathogenicity test was repeated three times and consistent results were obtained. The re-isolated fungal pathogen from the inoculated plants showed identical morphological characteristics to the original isolates, thus fulfilling Koch's postulates. For further identification, PCR amplification targeting Internal Transcribed Spacer (ITS) and RNA polymerase II gene (RPB2) regions were performed (Liu et al., 1999; White et al., 1990). Each PCR product was sequenced and deposited in the GenBank under the accession LC549667 and LC061275, respectively. Sequence analysis using BLAST showed that the nucleotide sequences of ITS and RPB2 DNA fragments are 99-100% identical to the reference strain of V. dahliae available in the NCBI database (MG585719, HE972023, XM_009652520 and DQ522468, respectively). Therefore, based on the results of morphological and molecular analyses, the fungal pathogen isolated from Chinese cabbage in this study was identified as V. dahliae and deposited in the National Institute of Horticultural and Herbal Science germplasm collection (NIHHS 13-252). Recently, due to high demand and a more competitive price, more Chrysanthemum farmers in Korea switch their crops to Chinese cabbage. Interestingly, the occurrence of V. dahliae infection was also reported to occur in Chrysanthemum plants in Korea (Han et al. 2007), which indicates a serious problem ahead to these farmers. Therefore, in this current study, the identification of V. dahliae pathogenic to Chinese cabbage will provide vital knowledge for the development of disease management strategies to minimize the loss of crop production. To our knowledge, this is the first report that V. dahliae causes Verticillium wilt disease on Chinese cabbage in Korea.

11.
Front Plant Sci ; 11: 559172, 2020.
Article in English | MEDLINE | ID: mdl-33584739

ABSTRACT

Detecting plant diseases in the earliest stages, when remedial intervention is most effective, is critical if damage crop quality and farm productivity is to be contained. In this paper, we propose an improved vision-based method of detecting strawberry diseases using a deep neural network (DNN) capable of being incorporated into an automated robot system. In the proposed approach, a backbone feature extractor named PlantNet, pre-trained on the PlantCLEF plant dataset from the LifeCLEF 2017 challenge, is installed in a two-stage cascade disease detection model. PlantNet captures plant domain knowledge so well that it outperforms a pre-trained backbone using an ImageNet-type public dataset by at least 3.2% in mean Average Precision (mAP). The cascade detector also improves accuracy by up to 5.25% mAP. The results indicate that PlantNet is one way to overcome the lack-of-annotated-data problem by applying plant domain knowledge, and that the human-like cascade detection strategy effectively improves the accuracy of automated disease detection methods when applied to strawberry plants.

12.
Micromachines (Basel) ; 10(10)2019 Sep 28.
Article in English | MEDLINE | ID: mdl-31569412

ABSTRACT

Nanoimprint lithography (NIL) is a micro/nanoscale patterning technology on thermoplastic polymer films, and has been widely used to fabricate functional micro/nanoscale patterns. NIL was also used to develop micro/nanoscale patterns on curved surfaces by employing flexible polymer stamps or micropatterned metal molds with macroscopic curvatures. In this study, two-step ultrasonic forming was used to develop micropatterns on a curved surface out of a flat metal stamp, by connecting ultrasonic imprinting and stretching processes. Ultrasonic imprinting was used to replicate functional micropatterns on a flat polymer film, using a flat ultrasonic horn and micropatterned metal stamps with prism and dot micropatterns. An ultrasonic stretching process was then used to form a curvature on the patterned film using a curved ultrasonic horn and a soft mold insert, to avoid damage to the pre-developed micropatterns. The ultrasonic horn was designed to have three different tip radii, and the resulting forming depth and curvature formation were investigated experimentally. As a result, three different curved surfaces containing two different micropatterns were obtained. The developed curved films containing micropatterns were then evaluated optically, and showed different optical diffusion and illumination characteristics according to the film curvature and micropattern type. These results indicate that the proposed technology can extend the functionality of conventional micropatterned products by imposing appropriate curvatures.

13.
Mycobiology ; 45(3): 160-171, 2017 Sep.
Article in English | MEDLINE | ID: mdl-29138620

ABSTRACT

Larvae of Bradysia agrestis, an insect vector that transports plant pathogens, were sampled from geographically isolated regions in Korea to identify their cutaneous fungal and bacterial flora. Sampled areas were chosen within the distribution range of B. agrestis; each site was more than 91 km apart to ensure geographical segregation. We isolated 76 microbial (fungi and bacteria) strains (site 1, 29; site 2, 29; site 3, 18 strains) that were identified on the basis of morphological differences. Species identification was molecularly confirmed by determination of universal fungal internal transcribed spacer and bacterial 16S rRNA gene sequences in comparison to sequences in the EzTaxon database and the NCBI GenBank database, and their phylogenetic relationships were determined. The fungal isolates belonged to 2 phyla, 5 classes, and 7 genera; bacterial species belonged to 23 genera and 32 species. Microbial diversity differed significantly among the geographical groups with respect to Margalef's richness (3.9, 3.6, and 4.5), Menhinick's index (2.65, 2.46, and 3.30), Simpson's index (0.06, 0.12, and 0.01), and Shannon's index (2.50, 2.17, and 2.58). Although the microbial genera distribution or diversity values clearly varied among geographical groups, common genera were identified in all groups, including the fungal genus Cladosporium, and the bacterial genera Bacillus and Rhodococcus. According to classic principles of co-evolutionary relationship, these genera might have a closer association with their host insect vector B. agrestis than other genera identified. Some cutaneous bacterial genera (e.g., Pseudomonas) displaying weak interdependency with insect vectors may be hazardous to agricultural environments via mechanical transmission via B. agrestis. This study provides comprehensive information regarding the cutaneous microflora of B. agrestis, which can help in the control of such pests for crop management.

14.
Mycobiology ; 44(3): 187-190, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27790070

ABSTRACT

In July 2015, diseased leaves of black chokeberry (Aronia melanocarpa) were observed in Danyang and Gochang, Korea. The symptoms appeared as circular or irregular brown leaf spots, from which Alternaria tenuissima was isolated. The isolates were cultured on potato dextrose agar, and their morphological characteristics were observed under a light microscope. The colonies were whitish to ash colored. The pathogenicity test on healthy black chokeberry leaves produced circular brown spots, in line with the original symptoms. Molecular analyses of the ITS, GPD, RPB2, and TEF genes were conducted to confirm the identity of the pathogen. The phylogeny of the multi-gene sequences indicated that the causal agent was A. tenuissima. This study is the first report of A. tenuissima leaf spot on black chokeberry (A. melanocarpa).

15.
J Basic Microbiol ; 56(1): 92-101, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26367263

ABSTRACT

This study analyzed the rhizobacterial distribution from two coasts, which show contrasting climates and geographical and geological characteristics, to secure specific microbial resources. Furthermore, rhizobacteria were characterized and the results were comparatively analyzed with reference to the characteristics of two coastal environments. For this purpose, three representative halophyte species communities native to the Dokdo Islands and the East Sea coast of Korea were selected. Partial identification of rhizobacteria showed a clear difference between each sampling site and halophyte. Furthermore, isolates were characterized by their growth properties under NaCl or pH gradients related with previous geographical, geological, and climatic studies of the Dokdo Islands and the East Sea coast. A high proportion of the East Sea isolates showed halotolerance, but a high proportion of Dokdo isolates shared halophilic traits. Meanwhile, a higher proportion of East Sea isolates grew at a wider range of pH values than those of the Dokdo Islands. The results of our study suggest that unique rhizobacterial resources developed under specific rhizospheric conditions derived from halophytes interacting with their specific environment, even within the same coastal halophytic species. Therefore, this study proposes the necessity of securing characterized and unique microbial resources to apply to specific environments for the purpose of recovering and restoring sand dunes or salt-damaged agricultural lands.


Subject(s)
Rhizobium/classification , Rhizobium/isolation & purification , Salt-Tolerant Plants/microbiology , Soil Microbiology , Base Sequence , Biodiversity , Climate , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Phenotype , Phylogeny , Plant Roots/microbiology , RNA, Ribosomal, 16S/genetics , Republic of Korea , Rhizobium/genetics , Rhizosphere , Salinity , Salt-Tolerant Plants/chemistry , Salt-Tolerant Plants/growth & development , Sequence Analysis, DNA , Sodium Chloride/chemistry , Sodium Chloride/metabolism , Soil/chemistry
16.
Mycobiology ; 43(3): 231-8, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26539039

ABSTRACT

A total of 4 aquatic plants, Eleocharis kuroguwai Ohwi, Hydrocharis dubia Backer, Salvinia natans All., and Zizania latifolia Turcz., were sampled from representative two wetlands of South Korea. A total of 38 endophytic fungal strains were isolated from aquatic plants native to the Daepyeong wetland, and 27 strains were isolated from the Jilnal wetland. The internal transcribed spacer regions of fungal isolates were sequenced and a phylogenetic analysis was performed. In addition, endophytic fungal diversity from each wetland and host plant species was deduced. A total of 25 fungal genera were purely isolated, and 16 fungal genera were isolated from each of the two wetlands. Commonly isolated genera from both wetlands were Aspergillus, Cladosporium, Clonostachys, Fusarium, Leptosphaeria, Penicillium, and Talaromyces. This study revealed that fungal diversity varied with environmental conditions and by host plant in representative two wetlands.

17.
Mycobiology ; 43(3): 343-6, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26539053

ABSTRACT

In 2006~2010, leaf spot symptoms, that is, small, yellow spots that turned into dark brown-to-black lesions surrounded by a yellow halo, were observed on Cymbidium spp. in Gongju, Taean, and Gapyeong in Korea. A Fusarium species was continuously isolated from symptomatic leaves; in pathogenicity testing, isolates caused leaf spot symptoms consisting of sunken, dark brown lesions similar to the original ones. The causal pathogen was identified as Fusarium subglutinans based on morphological and translation elongation factor 1-alpha sequence analyses. This is the first report of F. subglutinans as the cause of leaf spot disease in Cymbidium spp. in Korea.

18.
Ultrasonics ; 60: 96-102, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25817845

ABSTRACT

Ultrasonic imprint lithography (UIL) is a micropattern replication technology on thermoplastic polymers using ultrasonic vibration energy. The UIL process involves three steps: (i) microscale vibration from an ultrasonic horn causes repetitive deformation of a polymer surface, (ii) the polymer surface is locally softened by repetitive deformation and friction, and (iii) micro/nanoscale patterns engraved on the horn or the mold are replicated on the softened substrate. To replicate micro/nano patterns with high accuracy, the effects of various processing conditions should be investigated, and so far, these have been studied experimentally. In this study, coupled numerical analysis was performed using finite element simulation to investigate the heating mechanism of the UIL process, by joining transient structural analysis and heat transfer analysis. The effect of imprinting conditions on the heating capability was investigated using the proposed coupled simulation. The differences between direct and indirect imprinting are also discussed in terms of heating mechanism, and compared with experiments.

19.
Neural Netw ; 60: 182-93, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25241349

ABSTRACT

Humans are highly efficient at visual search tasks by focusing selective attention on a small but relevant region of a visual scene. Recent results from biological vision suggest that surfaces of distinct physical objects form the basic units of this attentional process. The aim of this paper is to demonstrate how such surface-based attention mechanisms can speed up a computer vision system for visual search. The system uses fast perceptual grouping of depth cues to represent the visual world at the level of surfaces. This representation is stored in short-term memory and updated over time. A top-down guided attention mechanism sequentially selects one of the surfaces for detailed inspection by a recognition module. We show that the proposed attention framework requires little computational overhead (about 11 ms), but enables the system to operate in real-time and leads to a substantial increase in search efficiency.


Subject(s)
Pattern Recognition, Automated/methods , Pattern Recognition, Visual , Attention , Cues , Humans , Memory, Short-Term , Models, Neurological , Vision, Ocular
20.
Mycobiology ; 42(2): 203-5, 2014 Jun.
Article in English | MEDLINE | ID: mdl-25071393

ABSTRACT

In 2010, symptoms of leaf and stem rot were observed on potted plants (Peperomia quadrangularis) in a greenhouse in Yongin, Korea. The causative pathogen was identified as Myrothecium roridum based on morphological data, internal transcribed spacer sequence analysis, and pathogenicity test. To our knowledge, this is the first report of M. roridum causing leaf and stem rot disease on P. quadrangularis in Korea and elsewhere worldwide.

SELECTION OF CITATIONS
SEARCH DETAIL
...