Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 198
Filter
1.
Curr Issues Mol Biol ; 46(5): 5010-5022, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38785568

ABSTRACT

Numerous hereditary ophthalmic diseases display significant genetic diversity. Consequently, the utilization of gene panel sequencing allows a greater number of patients to receive a genetic diagnosis for their clinical manifestations. We investigated how to improve the yield of genetic diagnosis through additional gene panel sequencing in hereditary ophthalmic diseases. A gene panel sequencing consisting of a customized hereditary retinopathy panel or hereditary retinitis pigmentosa (RP) panel was prescribed and referred to a CAP-accredited clinical laboratory. If no significant mutations associated with hereditary retinopathy and RP were detected in either panel, additional gene panel sequencing was requested for research use, utilizing the remaining panel. After additional gene panel sequencing, a total of 16 heterozygous or homozygous variants were identified in 15 different genes associated with hereditary ophthalmic diseases. Of 15 patients carrying any candidate variants, the clinical symptoms could be tentatively accounted for by genetic mutations in seven patients. However, in the remaining eight patients, given the in silico mutation predictive analysis, variant allele frequency in gnomAD, inheritance pattern, and genotype-phenotype correlation, fully elucidating the clinical manifestations with the identified rare variant was challenging. Our study highlights the utility of gene panel sequencing in achieving accurate diagnoses for hereditary ophthalmic diseases and enhancing the diagnostic yield through additional gene panel sequencing. Thus, gene panel sequencing can serve as a primary tool for the genetic diagnosis of hereditary ophthalmic diseases, even in cases where a single genetic cause is suspected. With a deeper comprehension of the genetic mechanisms underlying these diseases, it becomes feasible.

2.
J Hazard Mater ; 472: 134513, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38735183

ABSTRACT

Groundwater (GW) quality monitoring is vital for sustainable water resource management. The present study introduced a metagenome-derived machine learning (ML) model aimed at enhancing the predictive understanding and diagnostic interpretation of GW pollution associated with petroleum. In this framework, taxonomic and metabolic profiles derived from GW metagenomes were combined for use as the input dataset. By employing strategies that optimized data integration, model selection, and parameter tuning, we achieved a significant increase in diagnostic accuracy for petroleum-polluted GW. Explanatory artificial intelligence techniques identified petroleum degradation pathways and Rhodocyclaceae as strong predictors of a pollution diagnosis. Metagenomic analysis corroborated the presence of gene operons encoding aminobenzoate and xylene biodegradation within the de novo assembled genome of Rhodocyclaceae. Our genome-centric metagenomic analysis thus clarified the ecological interactions associated with microbiomes in breaking down petroleum contaminants, validating the ML-based diagnostic results. This metagenome-derived ML framework not only enhances the predictive diagnosis of petroleum pollution but also offers interpretable insights into the interaction between microbiomes and petroleum. The proposed ML framework demonstrates great promise for use as a science-based strategy for the on-site monitoring and remediation of GW pollution.


Subject(s)
Groundwater , Metagenome , Petroleum , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Groundwater/microbiology , Artificial Intelligence , Environmental Monitoring/methods , Machine Learning , Biodegradation, Environmental , Petroleum Pollution , Metagenomics/methods , Microbiota
3.
Heliyon ; 10(7): e28684, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38571618

ABSTRACT

Background: SCN4A mutations account for a diverse array of clinical manifestations, encompassing periodic paralysis, myotonia, and newly recognized symptoms like classical congenital myopathy or congenital myasthenic syndromes. We describe the initial occurrence of myopathic features mimic with recessive classical CM in a Korean infant presenting with novel compound heterozygous SCN4A mutations. The infant exhibited profound hypotonia after birth, thereby expanding the spectrum of SCN4A-related channelopathy. Methods: The genetic analyses comprised targeted exome sequencing, employing a Celemics G-Mendeliome DES Panel, along with Sanger sequencing. Results: Considering the clinical manifestations observed in the proband, SCN4A variants emerged as the primary contenders for autosomal recessive (AR) congenital myopathy 22a, classic (#620351). Sanger sequencing validated the association of SCN4A variants with the phenotype, affirming the AR nature of the compound heterozygous variants in both the carrier mother (c.3533G > T/p.Gly1178Val) and the father (c.4216G > A/p.Ala1406Thr). Conclusion: Our report emphasizes the association of novel compound heterozygous mutations in SCN4A with myopathic features resembling CM, as supporting by muscle biopsy. It is essential to note that pathogenic SCN4A LoF mutations are exceedingly rare. This study contributes to our understanding of SCN4A mutations and their role in myopathic features mimic with classical CM.

4.
Genes (Basel) ; 15(4)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38674380

ABSTRACT

BACKGROUND: Noonan syndrome (NS)/Noonan syndrome with multiple lentigines (NSML) is commonly characterized by distinct facial features, a short stature, cardiac problems, and a developmental delay of variable degrees. However, as many as 50% of individuals diagnosed with NS/NSML have a mildly affected parent or relative due to variable expressivity and possibly incomplete penetrance of the disorder, and those who are recognized to have NS only after a diagnosis are established in a more obviously affected index case. METHODS: In order to collect intergenerational data reported from previous studies, electronic journal databases containing information on the molecular genetics of PTPN11 were searched from 2000 to 2022. RESULTS: We present a case of a proband with a PTPN11 variant (c.1492C > T/p.Arg498Trp) inherited from an asymptomatic father, displaying only mild intellectual disability without classical symptoms of NS. Among our cases and the reported NS cases caused by the PTPN11 p.Arg498Trp variant, cardiac abnormalities (6/11), facial dysmorphism (7/11), skin pigmentation (4/11), growth problems (4/11), and sensorineural hearing loss (2/11) have been observed. NS/NSML patients with the PTPN11 p.Arg498Trp variant tend to exhibit relatively lower frequencies of skin pigmentation, facial dysmorphism and cardiac abnormalities and mild symptoms compared to those carrying any other mutated PTPN11. CONCLUSIONS: Paternally inherited NS/NSML caused by a PTPN11 p.Arg498Trp variant, including our cases, may exhibit relatively lower frequencies of abnormal features and mild symptoms. This could be ascribed to potential gene-gene interactions, gene-environment interactions, the gender and phenotype of the transmitting parent, or ethnic differences that influence the clinical phenotype.


Subject(s)
Noonan Syndrome , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Humans , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Male , Noonan Syndrome/genetics , Paternal Inheritance/genetics , Phenotype , Female , Pedigree
5.
Int J Mol Sci ; 25(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38612512

ABSTRACT

TRAF7-related disorders represent some of the rarest inherited disorders, exhibiting clinical features that overlap with cardiac, facial, and digital anomalies with developmental delay (CAFDADD) syndrome, as well as blepharophimosis-mental retardation syndrome (BMRS). A 36-year-old male, presenting with total blindness, blepharophimosis, and intellectual disability, was admitted for the assessment of resting dyspnea several months previously. He had a history of being diagnosed with obstructive sleep apnea (OSA). Transesophageal and transthoracic echocardiography unveiled right ventricular dilatation without significant pulmonary hypertension, bicuspid aortic valve with aortic root aneurysm, and aortic regurgitation in the proband. Sanger sequencing identified a de novo TRAF7 variant (c.1964G>A; p.Arg655Gln). Subsequently, aortic root replacement using the Bentall procedure was performed. However, despite the surgery, he continued to experience dyspnea. Upon re-evaluating OSA with polysomnography, it was discovered that continuous positive airway pressure support alleviated his symptoms. The underlying cause of his symptoms was attributed to OSA, likely exacerbated by the vertebral anomaly and short neck associated with CAFDADD syndrome. Clinicians should be attentive to the symptoms associated with OSA as it is a potentially serious medical condition in patients with TRAF7 variants.


Subject(s)
Blepharophimosis , Skin Abnormalities , Sleep Apnea, Obstructive , Urogenital Abnormalities , Male , Humans , Adult , Dyspnea , Republic of Korea , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins
6.
Sci Total Environ ; 931: 172698, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38688365

ABSTRACT

This study aims to develop and validate a comprehensive method for assessing ecological disturbances in groundwater ecosystems caused by tetrachloroethylene (PCE) contamination, utilizing flow cytometry (FCM) fingerprint approach. We hypothesized that the ecological disturbance resulting from PCE contamination would exhibit 'press disturbance', persisting over extended periods, and inducing notable phenotypic differences in the microbial community compared to undisturbed groundwater. We collected 40 groundwater samples from industrial district with a history of over twenty years of PCE contamination, along with 56 control groundwater from the national surveillance groundwater system. FCM revealed significant alterations in the phenotypic diversity of microbial communities in PCE-contaminated groundwater, particularly during the dry season. The presence of specific dechlorinating bacteria (Dehalococcoides, Dehalogenimonas, and Geobacter) and their syntrophic partners was identified as an indicator of contamination. Phenotypic diversity measures provided clearer and more direct reflections of contamination impact compared to taxonomic diversity measures. This study establishes FCM fingerprinting as a simple, robust, and accurate method for evaluating ecological disturbances, with potential applications in early warning systems and continuous monitoring of groundwater contamination. The findings not only underscore the sensitivity of FCM in detecting phenotypic variations induced by environmental stressors but also highlight its utility in understanding the complex dynamics of microbial communities in contaminated groundwater ecosystems.


Subject(s)
Environmental Monitoring , Flow Cytometry , Groundwater , Tetrachloroethylene , Water Pollutants, Chemical , Groundwater/chemistry , Groundwater/microbiology , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Tetrachloroethylene/analysis , Bacteria/classification , Bacteria/isolation & purification , Water Microbiology
7.
Int J Mol Sci ; 25(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38542271

ABSTRACT

While the precise triggers of gallstone formation remain incompletely understood, it is believed to arise from a complex interplay of genetic and environmental factors. The bile microbiome is being increasingly recognized as a possible contributor to the onset of gallstone disease. The primary objective of this study was to investigate distinctions in the microbial communities within bile specimens from patients with choledocholithiasis (common bile duct stones) and cholecystolithiasis (gallbladder stones). We employed massively parallel sequencing of the 16S rRNA gene to examine the microbial communities within bile samples obtained from 28 patients with choledocholithiasis (group DS) and cholecystolithiasis (group GS). The taxonomic composition of the bile microbial communities displayed significant disparities between the group DS and the group GS. Within the 16 prevalent genera, only Streptococcus, Ralstonia, Lactobacillus, and Enterococcus were predominantly found in the group GS. In contrast, the group DS displayed a more diverse range of genera. The alpha diversity of bile specimens was also notably lower in the group GS compared to the group DS (p = 0.041). Principal coordinate analysis unveiled distinct clustering of bile microbial communities depending on the location of the gallstone. Linear discriminant analysis effect size analysis, with a score threshold of >3 and the Kruskall-Wallis test (α < 0.05), recognized Bacilli and Lactobacillales as potential taxonomic markers for distinguishing patients with cholecystolithiasis limited to the gallbladder. Significant variations were found in the distribution and diversity of bile microbial communities between patients with choledocholithiasis and cholecystolithiasis. This observation suggests that alterations in the bile microbiome may contribute to the development of gallstones in these patients.


Subject(s)
Choledocholithiasis , Gallstones , Microbiota , Humans , Choledocholithiasis/genetics , Bile , RNA, Ribosomal, 16S/genetics , Microbiota/genetics
8.
Curr Issues Mol Biol ; 46(2): 1208-1218, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38392195

ABSTRACT

Gastric cancer (GC) persists as the fourth most prevalent cause of global cancer-related mortality, presenting a challenge due to the scarcity of available therapeutic strategies. Precision medicine is crucial not only in the treatment but also in the management of GC. We performed gene panel sequencing with Oncomine focus assay comprising 52 cancer-associated genes and MSI analysis in 100 case-matched gastric cancer cases. A comprehensive analysis of clinical and genetic characteristics was conducted on these genetic results and clinicopathological findings. Upon comparison of clinicopathological characteristics, significant differences between early gastric cancer (EGC) and advanced gastric cancer (AGC) were observed in tumor location (p = 0.003), Lauren classification (p = 0.015), T stage (p = 0.000), and N stage (p = 0.015). The six most frequently mutated genes were PIK3CA (29%, 10/35), ERBB2 (17%, 6/35), KRAS (14%, 5/35), ALK (6%, 2/35), ESR1 (6%, 2/35), and FGFR3 (6%, 2/35). Regarding genetic variation, there was a tendency for the N stage to be higher in GC patients with mutated genes (p = 0.014). The frequency of mutations in GC patients was statistically significantly higher in AGC (n = 24) compared to EGC (n = 11) (odds ratio, 2.792; 95% confidence interval, 1.113 to 7.007; p = 0.026). Six of the ten GC patients carrying mutated genes and exhibiting MSI were classified into intestinal-type and undifferentiated GC, with the location of the tumor being in the lower-third. Among these patients, five harbored mutated PIK3CA, while the remaining patient had a mutation in ALK. Conclusions: AGC patients more frequently exhibited alterations of PIK3CA, KRAS, and ERBB2 as somatic oncogenic drivers, and displayed a higher prevalence of cumulative genetic events, including increased rates of PIK3CA mutations, enhanced detection of immunotherapy biomarkers, and mutations of the ESR1 gene.

9.
Genes (Basel) ; 14(10)2023 10 10.
Article in English | MEDLINE | ID: mdl-37895274

ABSTRACT

X-linked recessive ichthyosis (XLI) is clinically characterized by dark brown, widespread dryness with polygonal scales. We describe the identification of STS and PUDP deletions using targeted panel sequencing combined with copy-number variation (CNV) analysis in XLI. A 9-month-old infant was admitted for genetic counseling. Since the second day after birth, the infant's skin tended to be dry and polygonal scales had accumulated over the abdomen and upper extremities. The infant's maternal uncle and brother (who had also exhibited similar skin symptoms from birth) presented with polygonal scales on their trunks. CNV analysis revealed a hemizygous deletion spanning 719.3 Kb on chromosome Xp22 (chrX:7,108,996-7,828,312), which included a segment of the STS gene and exhibited a Z ratio of -2 in the proband. Multiplex ligation-dependent probe amplification (MLPA) confirmed this interstitial Xp22.31 deletion. Our report underscores the importance of implementing CNV screening techniques, including sequencing data analysis and gene dosage assays such as MLPA, to detect substantial deletions that encompass the STS gene region of Xq22 in individuals suspected of having XLI.


Subject(s)
Ichthyosis, X-Linked , Steryl-Sulfatase , Humans , Infant , Male , DNA Copy Number Variations/genetics , Ichthyosis, X-Linked/genetics , Ichthyosis, X-Linked/diagnosis , Multiplex Polymerase Chain Reaction , Skin , Steryl-Sulfatase/genetics
10.
Genes (Basel) ; 14(6)2023 06 02.
Article in English | MEDLINE | ID: mdl-37372399

ABSTRACT

BACKGROUND: The clinical utility of circulating tumor DNA (ctDNA) in the early detection of tumor mutations for targeted therapy and the monitoring of tumor recurrence has been reported. However, the analytical validation of ctDNA assays is required for clinical application. METHODS: This study evaluated the analytical performance of the Oncomine Lung cfDNA Assay compared with the cobas®EGFR Mutation Test v2. The analytical specificity and sensitivity were estimated using commercially pre-certified reference materials. The comparative evaluation of the two assays was carried out using reference materials and plasma derived from patients diagnosed with lung cancer. RESULTS: Using 20 ng of input cell-free DNA (cfDNA), the analytical sensitivities for EGFR mutations with variant allele frequencies (VAFs) of 1% and 0.1% were 100% and 100%, respectively. With VAFs of 1.2% and 0.1% using 20 ng of input cfDNA, seven out of nine different mutations in six driver genes were identified in the Oncomine Lung cfDNA Assay. The two assays showed 100% concordance in 16 plasma samples clinically. Furthermore, various PIK3CA and/or TP53 mutations were identified only in the Oncomine Lung cfDNA Assay. CONCLUSIONS: The Oncomine Lung cfDNA Assay can be used to identify plasma EGFR mutations in patients with lung cancer, although further large-scale studies are required to evaluate the analytical validity for other types of aberrations and genes using clinical samples.


Subject(s)
Cell-Free Nucleic Acids , Lung Neoplasms , Humans , Cell-Free Nucleic Acids/genetics , Neoplasm Recurrence, Local , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Lung/pathology , ErbB Receptors/genetics
11.
J Alzheimers Dis ; 93(2): 403-409, 2023.
Article in English | MEDLINE | ID: mdl-37038821

ABSTRACT

Mutations in ITM2B have been reported to be associated with several familial dementias, such as Familial British dementia and familial Danish dementia. These are autosomal dominant disorders characterized by progressive dementia with an onset at around the fifth decade of life. We describe a family with cognitive impairment caused by a novel ITM2B p.*267Serext*11 mutation. The probands presented with cognitive impairment and cerebral infarction. MRI revealed diffuse white matter hyperintensity and microbleeds. Amyloid deposition was not observed on amyloid positron emission tomography. Our case suggests that the BRI2 mutation impacts cognition regardless of amyloid-ß accumulation.


Subject(s)
Alzheimer Disease , Cerebellar Ataxia , Dementia , Humans , Dementia/diagnostic imaging , Dementia/genetics , Amyloid beta-Peptides/genetics , Mutation/genetics , Cerebellar Ataxia/genetics , Republic of Korea , Alzheimer Disease/genetics , Adaptor Proteins, Signal Transducing/genetics
12.
Sci Total Environ ; 875: 162637, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36889412

ABSTRACT

This study aimed to assess the impact of Asian dust (AD) on the human health and the environment. Particulate matter (PM) and PM-bound trace elements and bacteria were examined to determine the chemical and biological hazards associated with AD days and compared with non-AD days in Seoul. On AD days, the mean PM10 concentration was ∼3.5 times higher than that on non-AD days. Elements generated from the Earth's crust (Al, Fe, and Ca) and anthropogenic sources (Pb, Ni, and Cd) were identified as major contributors to coarse and fine particles, respectively. During AD days, the study area was recognized as "severe" for pollution index and pollution load index levels, and "moderately to heavily polluted" for geoaccumulation index levels. The potential cancer risk (CR) and non-CR were estimated for the dust generated during AD events. On AD days, total CR levels were significant (in 1.08 × 10-5-2.22 × 10-5), which were associated with PM-bound As, Cd, and Ni. In addition, inhalation CR was found to be similar to the incremental lifetime CR levels estimated using the human respiratory tract mass deposition model. In a short exposure duration (14 days), high PM and bacterial mass deposition, significant non-CR levels, and a high presence of potential respiratory infection-causing pathogens (Rothia mucilaginosa) were observed during AD days. Significant non-CR levels were observed for bacterial exposure, despite insignificant levels of PM10-bound elements. Therefore, the substantial ecological risk, CR, and non-CR levels for inhalation exposure to PM-bound bacteria, and the presence of potential respiratory pathogens, indicate that AD events pose a significant risk to both human lung health and the environment. This study provides the first comprehensive examination of significant non-CR levels for bacteria and carcinogenicity of PM-bound metals during AD events.


Subject(s)
Air Pollutants , Metals, Heavy , Humans , Particulate Matter/analysis , Dust/analysis , Seoul , Air Pollutants/analysis , Cadmium , Environmental Monitoring , Metals/analysis , Risk Assessment , Republic of Korea/epidemiology , Bacteria , Metals, Heavy/analysis , Cities
13.
Medicina (Kaunas) ; 59(3)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36984443

ABSTRACT

Background and Objectives: There are reports of false qualitative HBsAg results, because of various causes, such as samples with low HBsAg concentrations that may produce false positives. The main aims of this study were to validate the analytical accuracy and to assess the utility of the Elecsys assay compared to that of the qualitative HbsAg assay as a screening test in resolving equivocal qualitative HbsAg results. Materials and Methods: The limit of blank (LoB), the limit of detection (LoD), the limit of quantification (LoQ), and linearity were estimated to validate the analytical accuracy of the Elecsys HBsAg II Quant assay. A total of 449 serum samples showing initial equivocal results (1-50 index) were evaluated by Elecsys HBsAg II Quant and ADVIA Centaur HBsAg II assays. Results: The LoQ of the assay was determined to be 0.050 IU/mL, as provided by the manufacturer. The Kappa agreement between the two assays was almost perfect, at 0.9669, despite seven discordant results. With a specificity of 100% at new cut-off index value ≥5.42, about 78 samples (17%, 78/449) with index value ≥5.42 were interpreted as positives without further duplicate tests, however the remaining 371 samples with index value <5.42 need to be confirmed with additional HBV marker assays. Conclusions: We confirm that the Elecsys HBsAg II Quant assay is accurate and sensitive for HBV infection and recommend it as an alternative confirmatory HBsAg assay for resolving equivocal qualitative HBsAg results.


Subject(s)
Hepatitis B Surface Antigens , Hepatitis B virus , Humans , Sensitivity and Specificity
14.
Diagnostics (Basel) ; 13(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36832257

ABSTRACT

BACKGROUND: Hereditary hemolytic anemia (HHA) is defined as a group of heterogeneous and rare diseases caused by defects of red blood cell (RBC) metabolism and RBC membrane, which leads to lysis or premature clearance. The aim of this study was to investigate individuals with HHA for potential disease-causing variants in 33 genes reported to be associated with HHA. METHODS: A total of 14 independent individuals or families diagnosed with suspected HHA, and in particular, RBC membranopathy, RBC enzymopathy, and hemoglobinopathy, were collected after routine peripheral blood smear testing. A custom designed panel, including the 33 genes, was performed using gene panel sequencing on the Ion Torrent PGM™ Dx System. The best candidate disease-causing variants were confirmed by Sanger sequencing. RESULTS: Several variants of the HHA-associated genes were detected in 10 out of 14 suspected HHA individuals. After excluding those variants predicted to be benign, 10 pathogenic variants and 1 variant of uncertain significance (VUS) were confirmed in 10 individuals with suspected HHA. Of these variants, the p.Trp704Ter nonsense variant of EPB41 and missense p.Gly151Asp variant of SPTA1 were identified in two out of four hereditary elliptocytoses. The frameshift p.Leu884GlyfsTer27 variant of ANK1, nonsense p.Trp652Ter variant of the SPTB, and missense p.Arg490Trp variant of PKLR were detected in all four hereditary spherocytosis cases. Missense p.Glu27Lys, nonsense p.Lys18Ter variants, and splicing errors such as c.92 + 1G > T and c.315 + 1G > A within HBB were identified in four beta thalassemia cases. CONCLUSIONS: This study provides a snapshot of the genetic alterations in a cohort of Korean HHA individuals and demonstrates the clinical utility of using gene panels in HHA. Genetic results can provide precise clinical diagnosis and guidance regarding medical treatment and management for some individuals.

15.
Sci Total Environ ; 866: 161398, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36621510

ABSTRACT

Data-driven model (DDM) prediction of aquatic ecological responses, such as cyanobacterial harmful algal blooms (CyanoHABs), is critically influenced by the choice of training dataset. However, a systematic method to choose the optimal training dataset considering data history has not yet been developed. Providing a comprehensive procedure with self-based optimal training dataset-selecting algorithm would self-improve the DDM performance. In this study, a novel algorithm was developed to self-generate possible training dataset candidates from the available input and output variable data and self-choose the optimal training dataset that maximizes CyanoHAB forecasting performance. Nine years of meteorological and water quality data (input) and CyanoHAB data (output) from a site on the Nakdong River, South Korea, were acquired and pretreated via an automated process. An artificial neural network (ANN) was chosen from among the DDM candidates by first-cut training and validation using the entire collected dataset. Optimal training datasets for the ANN were self-selected from among the possible self-generated training datasets by systematically simulating the performance in response to 46 periods and 40 sizes (number of data elements) of the generated training datasets. The best-performing models were screened to identify the candidate models. The best performance corresponded to 6-7 years of training data (∼18 % lower error) for forecasting 1-28 d ahead (1-28 d of forecasting lead time (FLT)). After the hyperparameters of the screened model candidates were fine-tuned, the best-performing model (7 years of data with 14 d FLT) was self-determined by comparing the forecasts with unseen CyanoHAB events. The self-determined model could reasonably predict CyanoHABs occurring in Korean waters (cyanobacteria cells/mL ≥ 1000). Thus, our proposed method of self-optimizing the training dataset effectively improved the predictive accuracy and operational efficiency of the DDM prediction of CyanoHAB.


Subject(s)
Cyanobacteria , Harmful Algal Bloom , Models, Theoretical , Forecasting , Machine Learning , Neural Networks, Computer , Water Quality
16.
Genes (Basel) ; 14(1)2023 01 12.
Article in English | MEDLINE | ID: mdl-36672942

ABSTRACT

Dysferlinopathy covers a spectrum of muscle disorder categorized by two major phenotypes, namely Miyoshi muscular dystrophy type 1 (MMD1, OMIM #254130) and limb-girdle muscular dystrophy autosomal recessive 2 (LGMDR2, OMIM #253601), and two minor symptoms, including asymptomatic hyperCKemia and distal myopathy with anterior tibial onset (DMAT, OMIM #606768). We report the first Korean MMD1 misdiagnosed as Becker muscular dystrophy (BMD), which was caused by a combination of compound heterozygous c.663 + 1G > C and p.Trp992Arg of the DYSF gene. A 70-year-old male previously diagnosed with BMD was admitted for genetic counseling. Since he was clinically suspected to have dysferlinopathy but not BMD, targeted panel sequencing was performed to discover the potential hereditary cause of the suspected muscular dystrophy in the proband. Consequently, two pathogenic single nucleotide variants of the DYSF gene, c.663 + 1G > C (rs398123800) and p.Trp992Arg (rs750028300), associated with dysferlinopathy were identified. These variants were previously reported with variant allele frequencies of 0.000455 (c.663 + 1G > C) and 0.000455 (c.2974T > C; p.Trp992Arg) in the Korean population. This report emphasizes the need for common variant screening in the diagnostic algorithms of certain muscle disorders or gene panels with potential pathogenic effects and high rates of recurrent variants.


Subject(s)
Distal Myopathies , Muscular Dystrophy, Duchenne , Male , Humans , Distal Myopathies/pathology , Dysferlin , Muscular Dystrophy, Duchenne/diagnosis , Muscular Dystrophy, Duchenne/genetics , Membrane Proteins/genetics , Muscle Proteins/genetics , Diagnostic Errors
17.
Genes (Basel) ; 14(1)2023 01 16.
Article in English | MEDLINE | ID: mdl-36672974

ABSTRACT

Background: Due to the extreme infectivity of SARS-CoV-2, sample-to-answer SARS-CoV-2 reverse transcription (RT) polymerase chain reaction (PCR) assays are urgently needed in order to facilitate infectious disease surveillance and control. The purpose of this study was to evaluate three sample-to-answer SARS-CoV-2 RT-PCR assays­BioFire COVID-19 Test, BioFire RP 2.1, and Cepheid Xpert Xpress SARS-CoV-2­using clinical samples. Methods: A total of 77 leftover nasopharyngeal swab (NP) swabs (36 positives and 41 negatives) confirmed by reference SARS-CoV-2 RT real-time (q) PCR assay were collected. The clinical sample concordance, as specified by their respective emergency use authorizations (EUAs), in comparison to the reference SARS-CoV-2 RT-qPCR assay, was assessed. Results: The results showed that all three sample-to-answer SARS-CoV-2 RT-PCR assays provided perfectly concordant results consistent with the reference SARS-CoV-2 RT-qPCR assay. The BioFire COVID-19 Test exhibited the best turnaround time (TAT) compared to the other assays, regardless of the test results, using one-way analysis of variance followed by Scheffe's post hoc test (p < 0.001). The Xpert Xpress SARS-CoV-2 showed a shorter average TAT (mean ± standard deviation, 49.9 ± 3.1 min) in the positive samples compared to that (55.7 ± 2.5 min) of the negative samples. Conclusions: Our evaluation demonstrates that the BioFire COVID-19 Test, BioFire RP 2.1, and Cepheid Xpert Xpress SARS-CoV-2 assays compare favorably to the reference SARS-CoV-2 RT-qPCR assay, along with a 100% concordance in assay results for clinical samples and an acceptable analytical performance at their guaranteed limits of detection. The addition of a widely used simultaneous sample-to-answer SARS-CoV-2 RT-PCR assay will contribute to the number of medical laboratories able to test for COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Clinical Laboratory Techniques/methods , COVID-19 Testing , Nasopharynx , Sensitivity and Specificity
18.
Bioresour Technol ; 370: 128532, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36574886

ABSTRACT

An anaerobic membrane bioreactor (AnMBR) with media is an emerging carbon-neutral biotechnology for low-strength wastewater (LSWW) treatment and methane recovery. Understanding metabolic dynamics among methanogens and syntrophic bacteria is important in optimizing the design and operation of AnMBR. However, little is known about it, especially in media-attached microbial communities. This study explored metabolic dynamics to compare media-attached and suspended conditions. Accordingly, metagenomes and metatranscriptomes from AnMBRs with polymeric media and fed with different influent concentrations (350 and 700 mg-COD/L) were analyzed. Metabolic dynamics were profoundly influenced by the different growth habitats and influent conditions, although the applied influent concentrations are within the range of typical LSWW. Metabolic dynamics prediction results suggest that media-attached-growth habitats may have provided a more favorable microenvironment for methanogens to grow and produce methane, especially under low influent conditions. These findings provide significant implications for optimizing floating media design and operation of AnMBR-producing methane from LSWW.


Subject(s)
Euryarchaeota , Wastewater , Waste Disposal, Fluid/methods , Anaerobiosis , Methane/metabolism , Bioreactors/microbiology , Euryarchaeota/metabolism , Membranes, Artificial
19.
Front Immunol ; 14: 1306604, 2023.
Article in English | MEDLINE | ID: mdl-38193075

ABSTRACT

Background: Humoral immune responses and infection risk after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and coronavirus disease 2019 (COVID-19) vaccination during the Omicron BA.5 and BN.1 variants predominant period remains unexplored in pediatric population. Methods: We examined anti-spike (anti-S) immunoglobulin G (IgG) responses in a total of 986 children aged 4-18 years who visited outpatient clinics between June 2022 and January 2023, with a history of SARS-CoV-2 infection alone, completed two doses of COVID-19 vaccination alone, vaccine-breakthrough infection (i.e., infection after the single dose of vaccination), and no antigenic exposure. Furthermore, to determine SARS-CoV-2 infection risk, the incidence of newly developed SARS-CoV-2 infection was investigated up to March 2023. Results: The anti-S IgG levels in the 'vaccine-breakthrough infection' group exceeded those in the 'infection alone' and 'vaccination alone' groups (both P <0.01). Furthermore, the 'vaccination alone' group experienced more rapid anti-S IgG waning than the 'infection alone' and 'vaccine-breakthrough infection' groups (both P <0.01). We could not identify newly developed SARS-CoV-2 infection in the 'vaccine-breakthrough infection' group. Conclusion: Our findings suggest that hybrid immunity, acquired from SARS-CoV-2 infection and COVID-19 vaccination, was a potentially higher and longer-lasting humoral immune response and protected against SARS-CoV-2 infection in pediatric population during Omicron BA.5 and BN.1 variants predominant.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Child , COVID-19/epidemiology , COVID-19/prevention & control , Immunity, Humoral , Breakthrough Infections , COVID-19 Vaccines , Republic of Korea/epidemiology , Vaccination , Immunoglobulin G
20.
Int J Mol Sci ; 25(1)2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38203422

ABSTRACT

16p11.2 copy number variations (CNVs) are increasingly recognized as one of the most frequent genomic disorders, and the 16p11.2 microdeletion exhibits broad phenotypic variability and a diverse clinical phenotype. We describe the neurodevelopmental course and discordant clinical phenotypes observed within and between individuals with identical 16p11.2 microdeletions. An analysis with the CytoScan Dx Assay was conducted on a GeneChip System 3000Dx, and the sample signals were then compared to a reference set using the Chromosome Analysis Suite software version 3.1. Ten patients from six separate families were identified with 16p11.2 microdeletions. Nine breakpoints (BPs) 4-5 and one BP2-5 of the 16p11.2 microdeletion were identified. All patients with 16p11.2 microdeletions exhibited developmental delay and/or intellectual disability. Sixty percent of patients presented with neonatal hypotonia, but muscle weakness improved with age. Benign infantile epilepsy manifested between the ages of 7-10 months (a median of 8 months) in six patients (60%). Vertebral dysplasia was observed in two patients (20%), and mild scoliosis was noted in three patients. Sixty percent of patients were overweight. We present six unrelated Korean families, among which identical 16p11.2 microdeletions resulted in diverse developmental trajectories and discordant phenotypes. The clinical variability and incomplete penetrance observed in individuals with 16p11.2 microdeletions remain unclear, posing challenges to accurate clinical interpretation and diagnosis.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 16 , DNA Copy Number Variations , Genetic Diseases, Inborn , Humans , Infant , Infant, Newborn , Republic of Korea , Chromosomes, Human, Pair 16/genetics , Phenotype , Developmental Disabilities/genetics , Intellectual Disability/genetics , East Asian People
SELECTION OF CITATIONS
SEARCH DETAIL
...