Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2406018, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39101351

ABSTRACT

Although various electrocatalysts have been developed to ameliorate the shuttle effect and sluggish Li-S conversion kinetics, their electrochemical inertness limits the sufficient performance improvement of lithium-sulfur batteries (LSBs). In this work, an electrochemically active MoO3/TiN-based heterostructure (MOTN) is designed as an efficient sulfur host that can improve the overall electrochemical properties of LSBs via prominent lithiation behaviors. By accommodating Li ions into MoO3 nanoplates, the MOTN host can contribute its own capacity. Furthermore, the Li intercalation process dynamically affects the electronic interaction between MoO3 and TiN and thus significantly reinforces the built-in electric field, which further improves the comprehensive electrocatalytic abilities of the MOTN host. Because of these merits, the MOTN host-based sulfur cathode delivers an exceptional specific capacity of 2520 mA h g-1 at 0.1 C. Furthermore, the cathode exhibits superior rate capability (564 mA h g-1 at 5 C), excellent cycling stability (capacity fade rate of 0.034% per cycle for 1200 cycles at 2 C), and satisfactory areal capacity (6.6 mA h cm-2) under a high sulfur loading of 8.3 mg cm-2. This study provides a novel strategy to develop electrochemically active heterostructured electrocatalysts and rationally manipulate the built-in electric field for achieving high-performance LSBs.

2.
Adv Mater ; 36(1): e2308684, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37947147

ABSTRACT

Zn metal anodes (ZMAs) undergo irregular deposition and unfavorable side reactions, which hinders the practical application of aqueous rechargeable Zn metal batteries (ARZMBs). Chemical replacement reaction (CRR) strategies can achieve stable ZMAs, but the effect of the crystal facets of metallic Zn as reductants remains poorly understood. In this study, based on the observation that preferentially exposed Zn crystal facets affect the surface characteristics of chemically replaced layers in Sn-based CRR, a multifunctional Sn-based interfacial layer (ZnTCF@Sn) is designed on the Zn with textured crystal facets using a novel two-step CRR process. ZnTCF@Sn simultaneously provides abundant zincophilic sites and high surface energy and homogenizes the distribution of current/Zn2+ flux, resulting in fast electrochemical kinetics and dendrite-free deposition. Furthermore, the uniform Sn coverage on the ZnTCF@Sn surface inhibits side reactions and enhances reversibility during Zn deposition/dissolution. Thus, the ZnTCF@Sn achieves exceptional cyclability over 1200 h even under harsh operating conditions with a cumulative capacity of 24 Ah cm-2 . This study contributes to the development of practical ARZMBs by providing new insights into the effect of the Zn crystal facets on the surface modification of ZMAs through various CRRs.

SELECTION OF CITATIONS
SEARCH DETAIL
...