Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Toxicol Sci ; 68(2): 288-94, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12151624

ABSTRACT

The intestinal absorption of cadmium (Cd) increases when the body iron (Fe) stores are depleted. The depletion of Fe upregulates the expression of divalent metal transporter 1 (DMT1), which is located at the apical membrane of enterocytes lining the small intestine. DMT1 has been shown to transport Fe and other divalent metal ions in vitro. However, it is not known whether DMT1 mediates the intestinal absorption of Cd. To investigate DMT1 involvement in Cd absorption, rats were fed a diet for 4 weeks either deficient in Fe (FeD diet, 2-6 mg Fe/kg) or supplemented with Fe (FeS diet, 120 mg Fe/kg), followed by a single oral administration of 109 CdCl2. Body Fe status, hemoglobin, and tissue Cd concentration were determined at 48 h after Cd administration. Also, DMT1 mRNA levels were quantified in duodenum, kidney, and liver by the branched DNA signal amplification method. Animals fed the FeD diet exhibited a reduced body weight gain, depletion of body Fe, and Fe deficiency anemia. Tissue Cd concentration was significantly higher in FeD than in FeS diet-fed rats, especially in the duodenum. The amount of Cd retained in the body was 10-fold higher in rats fed the FeD diet than in those fed the FeS diet. DMT1 mRNA was highly expressed in duodenum and was 15-fold higher in the FeD diet group. The levels of DMT1 mRNA were significantly lower in kidney and liver than in duodenum, but were 30 and 40% higher, respectively, in rats fed the FeD diet than in rats fed the FeS diet. These findings suggest that functional DMT1 protein is likely upregulated in the small intestine at the mRNA level by body iron depletion and increases Cd uptake from the gastrointestinal tract with subsequent transfer of Cd to the circulation and body tissues. Furthermore, the data from this study may indicate that DMT1 is a nonspecific metal transporter, which can transport not only Fe, but probably the toxic metal as well.


Subject(s)
Cadmium/pharmacokinetics , Cation Transport Proteins/biosynthesis , Intestinal Absorption , Iron-Binding Proteins/biosynthesis , Anemia, Iron-Deficiency/metabolism , Animals , Body Burden , Body Weight/drug effects , Cation Transport Proteins/genetics , Duodenum/drug effects , Duodenum/metabolism , Iron/administration & dosage , Iron/metabolism , Iron, Dietary , Iron-Binding Proteins/genetics , Male , Oligonucleotide Probes/chemistry , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Up-Regulation
2.
Toxicology ; 171(2-3): 105-15, 2002 Feb 28.
Article in English | MEDLINE | ID: mdl-11836017

ABSTRACT

Di-(2-ethylhexyl)phthalate (DEHP), used widely in the manufacture of plastics, is a well-known reproductive toxicant. It causes apoptosis and loss of spermatogenic cells, resulting in testicular atrophy. Reports are scarce in the literature on the progression of apoptosis following repeated doses of phthalates. DEHP's mechanism of inducing testicular atrophy has been associated with depletion of zinc in the testis. ZnT-1 is a zinc transporter that is highly expressed in the testis. Thus, DEHP might exert its toxic effects on the testis by altering the expression of ZnT-1. In this regard, 25-day old Sprague-Dawley rats were given vehicle (5 ml corn-oil/kg, po) for 2, 7 and 14 days, or DEHP (2 g/5 ml corn-oil/kg, po) daily, for 1, 2, 3, 5, 7, 10 and 14 days. Zinc content in testes was determined by atomic absorption spectrophotometry, and ZnT-1 mRNA was quantified by the branched DNA signal amplification method. Body weight gain and testicular weight (absolute and relative) were significantly lower in DEHP-treated rats. DEHP produced morphological changes in the testis, including apoptosis, necrosis, and loss of spermatogenic cells, which resulted in testicular atrophy. Apoptotic index (AI: the percentage of apoptotic cells in seminiferous tubules), determined using the TUNEL technique, was markedly increased after 1 day (AI: 2.9%, control AI: 0.1-0.3%) followed by a peak at 3 days (AI: 11.5%) and a gradual decrease till 10-14 days (AI: 7-9%). Zinc content in testis was not changed 1 day after DEHP administration, but decreased significantly at later time points. No difference was found in ZnT-1 mRNA expression between control and DEHP-treated animals until day 14. Our results suggest that apoptosis, along with necrosis, plays an important role in the mechanism of testicular atrophy by DEHP. In addition, ZnT-1 mRNA expression was not altered by DEHP and therefore, it appears that ZnT-1 cannot account for the decrease in testicular Zn content. Pathological lesions and apoptosis occurred prior to the loss of zinc in testis, suggesting that zinc depletion might be a secondary effect of DEHP-induced testicular toxicity, rather than the cause.


Subject(s)
Diethylhexyl Phthalate/toxicity , Testis/drug effects , Age Factors , Animals , Apoptosis , Atrophy , Body Weight/drug effects , Cation Transport Proteins , Immunohistochemistry , In Situ Nick-End Labeling , Male , Membrane Proteins/analysis , Membrane Proteins/genetics , Organ Size , Photomicrography , RNA, Messenger/analysis , Rats , Rats, Sprague-Dawley , Spermatogenesis/drug effects , Testis/metabolism , Testis/pathology , Zinc/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...