Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
IEEE Trans Image Process ; 33: 2979-2994, 2024.
Article in English | MEDLINE | ID: mdl-38640048

ABSTRACT

Many studies have attempted to classify small drones in response to threats posed by the technical progress of small drones. Recently, small drones have been classified utilizing convolutional neural networks (CNNs) with micro-Doppler signature (MDS) images generated from frequency-modulated continuous-wave (FMCW) radars. This study proposes a comprehensive method for classifying small drones in real-time using high-quality MDS images and an ultra-lightweight CNN. The proposed comprehensive method comprises an MDS image generation technique, which can improve the quality of MDS images generated via FMCW radars, and the ultra-lightweight CNN with high accuracy performance despite its remarkable lightness. Experimental results show that the proposed MDS image generation technique increases the accuracy of CNNs by enhancing the MDS image quality. This is further verified using the results of uncertainty quantification. The proposed ultra-lightweight CNN significantly decreases the computational cost while achieving high accuracy. Finally, we demonstrate that the proposed comprehensive method successfully classifies small drones from far distances with high efficiency and accuracy: the maximum and average accuracies for classification are 100% and 99.21%, respectively, and the numbers of parameters, nodes, and floating-point operations of the proposed ultra-lightweight CNN are approximately 4.88 K, 21.51 K, and 31.52 M, respectively.

2.
Int J Inj Contr Saf Promot ; 31(2): 203-215, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38164519

ABSTRACT

Construction workers face a high risk of various occupational accidents, many of which can result in fatalities. This study aims to develop a prediction model for nine prevalent types of construction accidents, utilizing construction tasks, activities, and tools/materials as input features, through the application of machine learning-based multi-class classification algorithms. 152,867 construction accident summary reports, composed of both structured (construction task, construction activity, accident type) and unstructured data (tools/materials) were used for the study. The study employed several data processing techniques, including keyword extraction through text mining, Boruta feature selection, and SMOTE data resampling enhance model accuracy. Three performance metrics (Multi-class area under the receiver operating characteristic curve (MAUC), Multi-class Matthews Correlation Coefficient (MMCC), Geometric-mean (G-mean)) were used to compare the predictive performance of four machine learning algorithms, including Decision tree, Random forest, Naïve bayes, and XGBoost. Of the four algorithms, XGBoost showed the highest performance in predicting accident type (MAUC: 0.8603, MMCC: 0.3523, G-mean: 0.5009). Furthermore, a Shapley additive explanation (SHAP) analysis was conducted to visualize feature importance. The findings of this study make a valuable contribution to improving construction safety by presenting a prediction model for accident types derived from real-world big data.


Subject(s)
Accidents, Occupational , Construction Industry , Data Mining , Machine Learning , Data Mining/methods , Humans , Republic of Korea , Accidents, Occupational/prevention & control , Algorithms , Bayes Theorem
3.
ACS Appl Mater Interfaces ; 16(6): 7875-7882, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38266383

ABSTRACT

This study proposes the use of physical unclonable functions employing circularly polarized light emission (CPLE) from nematic liquid crystal (NLC) ordering directed by helical nanofilaments in a mixed system composed of a calamitic NLC mixture and a bent-core molecule. To achieve this, an intrinsically nonemissive NLC is blended with a high concentration of a luminescent rod-like dye, which is miscible up to 10 wt % in the calamitic NLC without a significant decrease in the degree of alignment. The luminescence dissymmetry factor of CPLEs in the mixed system strongly depends on the degree of alignment of the dye-doped NLCs. Furthermore, the mixed system prepared in this study exhibits two randomly generated chiral domains with CPLEs of opposite signs. These chiral domains are characterized not only by their CPLE performances but also by their ability to generate random patterns up to several millimeters, making them promising candidates for high-performance secure authentication applications.

4.
ACS Nano ; 18(1): 909-918, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-37991339

ABSTRACT

Chiral perovskites have garnered significant attention, owing to their chiroptical properties and emerging applications. Current fabrication methods often involve complex chemical synthesis routes. Herein, an alternative approach for introducing chirality into nonchiral hybrid organic-inorganic perovskites (HOIPs) using nanotemplates composed of cholesteric polymeric networks is proposed. This method eliminates the need for additional molecular design. In this process, HOIP precursors are incorporated into a porous cholesteric polymer film, and two-dimensional (2D) HOIPs grow inside the nanopores. Circularly polarized light emission (CPLE) was observed even though the selective reflection band of the cholesteric polymer films containing a representative HOIP deviated from the emission wavelength of the 2D HOIP. This effect was confirmed by the induced circular dichroism (CD) observed in the absorbance band of the HOIP. The observed CPLE and CD are attributed to the chirality induced by the template in the originally nonchiral 2D HOIP. Additionally, the developed 2D HOIP exhibited a long exciton lifetime and good stability under harsh conditions. These findings provide valuable insights into the development and design of innovative optoelectronic materials.

5.
ACS Nano ; 17(20): 20680-20688, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37831937

ABSTRACT

Tin monosulfide (SnS) is a promising piezoelectric material with an intrinsically layered structure, making it attractive for self-powered wearable and stretchable devices. However, for practical application purposes, it is essential to improve the output and manufacturing compatibility of SnS-based piezoelectric devices by exploring their large-area synthesis principle. In this study, we report the chemical vapor deposition (CVD) growth of centimeter-scale two-dimensional (2D) SnS layers at temperatures as low as 200 °C, allowing compatibility with processing a range of polymeric substrates. The intrinsic piezoelectricity of 2D SnS layers directly grown on polyamides (PIs) was confirmed by piezoelectric force microscopy (PFM) phase maps and force-current corroborative measurements. Furthermore, the structural robustness of the centimeter-scale 2D SnS layers/PIs allowed for engraving complicated kirigami patterns on them. The kirigami-patterned 2D SnS layer devices exhibited intriguing strain-tolerant piezoelectricity, which was employed in detecting human body motions and generating photocurrents irrespective of strain rate variations. These results establish the great promise of 2D SnS layers for practically relevant large-scale device technologies with coupled electrical and mechanical properties.

6.
Chem Commun (Camb) ; 59(72): 10722-10736, 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37606169

ABSTRACT

With the emergence of the Internet of Things, wearable electronics, and machine vision, the exponentially growing demands for miniaturization, energy efficiency, and cost-effectiveness have imposed critical requirements on the size, weight, power consumption and cost (SWaP-C) of infrared detectors. To meet this demand, new sensor technologies that can reduce the fabrication cost associated with semiconductor epitaxy and remove the stringent requirement for cryogenic cooling are under active investigation. In the technologically important spectral region of mid-wavelength infrared, intraband colloidal quantum dots are currently at the forefront of this endeavor, with wafer-scale monolithic integration and Auger suppression being the key material capabilities to minimize the sensor's SWaP-C. In this Feature Article, we provide a focused review on the development of sensors based on Ag2Se intraband colloidal quantum dots, a heavy metal-free colloidal nanomaterial that has merits for wide-scale adoption in consumer and industrial sectors.

7.
Appl Radiat Isot ; 197: 110826, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37094496

ABSTRACT

Large-sized crystals and state-of-the-art photosensors are desirable to cope with low environmental radioactivity (e.g., 1-2 Bq∙m-3137Cs in surface seawater) for homeland security purposes. We compared the performances of two different gamma-ray detector assemblies, GAGG crystal + silicon photomultiplier (SiPM) and NaI(Tl) crystal + photomultiplier tube, for our mobile in-situ ocean radiation monitoring system. We performed energy calibration, followed by water tank experiments with varying the depth of a137Cs point source. Experimental energy spectra were compared with MCNP-simulated spectra with identical setup and the consistency was validated. We finally assessed the detection efficiency and minimum detectable activity (MDA) of the detectors. Both GAGG and NaI detectors exhibited favorable energy resolutions (7.98 ± 0.13% and 7.01 ± 0.58% at 662 keV, respectively) and MDAs (33.1 ± 0.0645 and 13.5 ± 0.0327 Bq∙m-3 for 24-h 137Cs measurement, respectively). Matching the geometry of the GAGG crystal with that of the NaI crystal, the GAGG detector outperformed the NaI detector. The results demonstrated that the GAGG detector is potentially advantageous over the NaI detector in detection efficiency and compactness.

10.
Molecules ; 26(19)2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34641599

ABSTRACT

In this paper, a simple and powerful method to control the induced handedness of helical nanofilaments (HNFs) is presented. The nanofilaments are formed by achiral bent-core liquid crystal molecules employing a cholesteric liquid crystal field obtained by doping a rod-like nematogen with a chiral dopant. Homochiral helical nanofilaments are formed in the nanophase-separated helical nanofilament/cholesteric phase from a mixture with a cholesteric phase. This cholesteric phase forms at a temperature higher than the temperature at which the helical nanofilament in a bent-core molecule appears. Under such conditions, the cholesteric liquid crystal field acts as a driving force in the nucleation of HNFs, realizing a perfectly homochiral domain consisting of identical helical nanofilament handedness.

11.
Diagnostics (Basel) ; 11(8)2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34441415

ABSTRACT

Magnetic resonance imaging (MRI) is increasingly important in the detection and localization of prostate cancer. Regarding suspicious lesions on MRI, a targeted biopsy using MRI fused with ultrasound (US) is widely used. To achieve a successful targeted biopsy, a precise registration between MRI and US is essential. The purpose of our study was to show any decrease in errors using a real-time nonrigid registration technique for prostate biopsy. Nineteen patients with suspected prostate cancer were prospectively enrolled in this study. Registration accuracy was calculated by the measuring distance of corresponding points by rigid and nonrigid registration between MRI and US, and compared for rigid and nonrigid registration methods. Overall cancer detection rates were also evaluated by patient and by core. Prostate volume was measured automatically from MRI and manually from US, and compared to each other. Mean distances between the corresponding points in MRI and US were 5.32 ± 2.61 mm for rigid registration and 2.11 ± 1.37 mm for nonrigid registration (p < 0.05). Cancer was diagnosed in 11 of 19 patients (57.9%), and in 67 of 266 biopsy cores (25.2%). There was no significant difference in prostate-volume measurement between the automatic and manual methods (p = 0.89). In conclusion, nonrigid registration reduces targeting errors.

12.
Front Pharmacol ; 12: 612078, 2021.
Article in English | MEDLINE | ID: mdl-33716741

ABSTRACT

Herein, we have evaluated the protective potentials of Fisetin against d-galactose-induced oxidative stress, neuroinflammation, and memory impairment in mice. d-galactose (D-gal) causes neurological impairment by inducing reactive oxygen species (ROS), neuroinflammation, and synaptic dysfunction, whereas fisetin (Fis) is a natural flavonoid having potential antioxidant effects, and has been used against different models of neurodegenerative diseases. Here, the normal mice were injected with D-gal (100 mg/kg/day for 60 days) and fisetin (20 mg/kg/day for 30 days). To elucidate the protective effects of fisetin against d-galactose induced oxidative stress-mediated neuroinflammation, we conducted western blotting, biochemical, behavioral, and immunofluorescence analyses. According to our findings, D-gal induced oxidative stress, neuroinflammation, synaptic dysfunctions, and cognitive impairment. Conversely, Fisetin prevented the D-gal-mediated ROS accumulation, by regulating the endogenous anti-oxidant mechanisms, such as Sirt1/Nrf2 signaling, suppressed the activated p-JNK/NF-kB pathway, and its downstream targets, such as inflammatory cytokines. Hence, our results together with the previous reports suggest that Fisetin may be beneficial in age-related neurological disorders.

13.
BMC Pediatr ; 21(1): 109, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33663442

ABSTRACT

BACKGROUND: Fever in infants under 90 days of age is highly likely to be caused by a severe bacterial infection (SBI) and it accounts for a large number of patients visiting the pediatric emergency room. In order to predict the bacterial infection and reduce unnecessary treatment, the classic classification system is based on white blood cell (WBC) count, urinalysis, and x-ray, and it is modified and applied at each center by incorporating recently studied biomarkers such as c-reactive protein (CRP) or procalcitonin (PCT). This study analyzed the usefulness of PCT in predicting SBI when applied along with the existing classification system, including CRP, among infants less than 90 days old who visited with a fever at a single institution pediatric emergency center. METHODS: We retrospectively reviewed the medical records of patients younger than 3 months of age who presented with fever at the Seoul Asan Medical Center pediatric emergency room between July 2017 and October 2018. RESULTS: A total of 317 patients were analyzed, and 61 were diagnosed with SBI, among which urinary tract infection (UTI) accounted for the largest proportion (55/61, 90.2%). There were differences in WBC, neutrophil proportion, CRP, and PCT between the SBI group and the non-SBI group, and the AUC values of WBC, CRP, and PCT were 0.651, 0.804, and 0.746, respectively. When using the cut-off values of CRP and PCTs as 2.0 mg/dL and 0.3 ng/mL, respectively, the sensitivity and specificity for SBI were 49.2/89.5, and 54.1/87.5, respectively. WBC, CRP, and PCT were statistically significant for predicting SBI in multivariate analysis (odds ratios 1.066, 1.377, and 1.291, respectively). When the subjects were classified using the existing classification criteria, WBC and CRP, the positive predictive value (PPV) and negative predictive value (NPV) were 29.3 and 88.7%, respectively, and when PCT was added, the PPV and NPV were 30.7 and 92%, respectively, both increased. CONCLUSION: PCT is useful for predicting SBI in children aged 3 months or less who visit the emergency room with a fever. It is useful as a single biomarker, and when used in conjunction with classic biomarkers, its diagnostic accuracy is further increased.


Subject(s)
Bacterial Infections , Procalcitonin , Biomarkers , C-Reactive Protein/analysis , Child , Emergency Service, Hospital , Fever/diagnosis , Fever/etiology , Humans , Infant , Leukocyte Count , Prospective Studies , Retrospective Studies
14.
Pediatr Res ; 90(5): 1016-1022, 2021 11.
Article in English | MEDLINE | ID: mdl-33504965

ABSTRACT

BACKGROUND: There has been a growing interest in the association between mitochondrial dysfunction and sepsis. However, most studies have focused on mitochondrial structural damage, functional aspects, or the clinical phenotypes in sepsis. The purpose of this study was to evaluate mitochondrial DNA (mtDNA) gene mutations in critically ill pediatric patients with septic shock. METHOD: Thirteen patients with severe sepsis or septic shock admitted to the pediatric intensive care unit (PICU) of a tertiary children's hospital were enrolled in this prospective observational study. Clinical data from electronic medical records were obtained. Whole-blood samples were collected within 24 h of PICU admission to perform PBMC isolation, mtDNA extraction, and mtDNA sequencing using next-generation sequencing. RESULTS: mtDNA sequencing revealed mutations in 9 of the 13 patients, presenting 27 point mutations overall, with 15 (55.6%) located in the locus related to adenosine triphosphate production and superoxide metabolism, including electron transport. CONCLUSION: In this pilot study, significant numbers of mtDNA point mutations were detected in critically ill pediatric patients with septic shock. These mutations could provide promising evidence for mitochondrial dysfunction in sepsis and a basis for further large-scale studies. IMPACT: This study is the first to examine mitochondrial DNA mutations in pediatric patients with septic shock using next-generation sequencing. A high frequency of mitochondrial DNA mutations was detected in these patients indicating an association with septic shock. This pilot study may provide a potential explanation for the association between mitochondrial dysfunction and septic shock on a genetic basis.


Subject(s)
Genome, Mitochondrial , Point Mutation , Shock, Septic/genetics , Adolescent , Child , Child, Preschool , Female , High-Throughput Nucleotide Sequencing/methods , Humans , Infant , Intensive Care Units, Pediatric , Male , Pilot Projects , Prospective Studies , Shock, Septic/blood
15.
BMC Pediatr ; 20(1): 184, 2020 04 24.
Article in English | MEDLINE | ID: mdl-32331520

ABSTRACT

BACKGROUND: Intussusception decreases blood flow to the bowel, and tissue hypoperfusion results in increased lactic acid levels. We aimed to determine whether lactic acid levels are associated with pediatric intussusception outcomes. METHODS: The electronic medical records of our emergency department pediatric patients diagnosed with intussusception, between January 2015 and October 2018, were reviewed. An outcome was considered poor when intussusception recurred within 48 h of reduction or when surgical reduction was required due to air enema failure. RESULTS: A total of 249 patients were included in the study, including 39 who experienced intussusception recurrence and 11 who required surgical reductions; hence, 50 patients were included in the poor outcome group. The poor and good outcome groups showed significant differences in their respective blood gas analyses for pH (7.39 vs. 7.41, P = .001), lactic acid (1.70 vs. 1.30 mmol/L, P < .001), and bicarbonate (20.70 vs. 21.80 mmol/L, P = .036). Multivariable logistic regression analyses showed that pH and lactic acid levels were the two factors significantly associated with poor outcomes. When the lactic acid level cutoff values were ≥ 1.5, ≥2.0, ≥2.5, and ≥ 3.0 mmol/L, the positive predictive values for poor outcomes were 30.0, 34.6, 50.0, and 88.9%, respectively. CONCLUSION: Lactic acid levels affect outcomes in pediatric patients with intussusception; higher lactic acid levels are associated with higher positive predictive values for poor outcomes.


Subject(s)
Intussusception , Child , Emergency Service, Hospital , Enema , Humans , Infant , Intussusception/diagnosis , Intussusception/surgery , Lactic Acid , Recurrence , Retrospective Studies , Treatment Outcome
16.
Drug Des Devel Ther ; 14: 445-456, 2020.
Article in English | MEDLINE | ID: mdl-32099329

ABSTRACT

BACKGROUND: Novel three-layered (TL) tablet systems were compared with both monolithic matrix (MM) formulations and a commercial immediate-release (IR) capsule to develop once-a-day (OAD) pregabalin tablets. METHODS: The physical properties of the TL tablets, including dissolution and swelling rates, were compared with those of the MM tablets and the pharmacokinetic parameters of the TL tablet were compared with those of an IR capsule in beagles and humans. RESULTS: Our results indicated that the same amount of a hydrophilic polymer in the formulations had similar dissolution profiles at 12 h, regardless of the tablet geometry. However, the degree of tablet swelling differed, with larger amounts of polymer in the tablets showing a greater degree of swelling. In addition, TL tablets swelled more rapidly compared with MM tablets. For the pharmacokinetic study of the TL tablet, the beagles demonstrated absorption results similar to those of an IR capsule, whereas the humans demonstrated low total absorption compared with an IR capsule. The time of the peak plasma concentration at 6 h in the fed state of humans coincided with the results of the study on beagles. CONCLUSION: The novel TL tablet system of pregabalin may prove to be helpful in developing improved formulations with better continuous drug absorption for OAD administration.


Subject(s)
Analgesics/pharmacokinetics , Pregabalin/pharmacokinetics , Tablets/pharmacokinetics , Adult , Analgesics/blood , Analgesics/chemistry , Animals , Dogs , Drug Compounding , Drug Liberation , Healthy Volunteers , Humans , Male , Middle Aged , Pregabalin/blood , Pregabalin/chemistry , Republic of Korea , Tablets/analysis , Tablets/chemistry , Young Adult
17.
J Clin Med ; 8(5)2019 May 14.
Article in English | MEDLINE | ID: mdl-31091792

ABSTRACT

Cadmium (Cd), a nonbiodegradable heavy metal and one of the most neurotoxic environmental and industrial pollutants, promotes disturbances in major organs and tissues following both acute and chronic exposure. In this study, we assessed the neuroprotective potential of caffeine (30 mg/kg) against Cd (5 mg/kg)-induced oxidative stress-mediated neuroinflammation, neuronal apoptosis, and cognitive deficits in male C57BL/6N mice in vivo and in HT-22 and BV-2 cell lines in vitro. Interestingly, our findings indicate that caffeine markedly reduced reactive oxygen species (ROS) and lipid peroxidation (LPO) levels and enhanced the expression of nuclear factor-2 erythroid-2 (Nrf-2) and hemeoxygenase-1 (HO-1), which act as endogenous antioxidant regulators. Also, 8-dihydro-8-oxoguanine (8-OXO-G) expression was considerably reduced in the caffeine-treated group as compared to the Cd-treated group. Similarly, caffeine ameliorated Cd-mediated glial activation by reducing the expression of glial fibrillary acidic protein (GFAP), ionized calcium-binding adapter molecule 1 (Iba-1), and other inflammatory mediators in the cortical and hippocampal regions of the mouse brain. Moreover, caffeine markedly attenuated Cd-induced neuronal loss, synaptic dysfunction, and learning and cognitive deficits. Of note, nuclear factor-2 erythroid-2 (Nrf-2) gene silencing and nuclear factor-κB (NF-κB) inhibition studies revealed that caffeine exerted neuroprotection via regulation of Nrf-2- and NF-κB-dependent mechanisms in the HT-22 and BV-2 cell lines, respectively. On the whole, these findings reveal that caffeine rescues Cd-induced oxidative stress-mediated neuroinflammation, neurodegeneration, and memory impairment. The present study suggests that caffeine might be a potential antioxidant and neuroprotective agent against Cd-induced neurodegeneration.

18.
Nanotechnology ; 30(23): 235702, 2019 Jun 07.
Article in English | MEDLINE | ID: mdl-30780139

ABSTRACT

Titanium dioxide (TiO2)-multi-walled carbon nanotube (MWCNT) thin films were prepared and studied systematically for the effects of the concentration of MWCNTs on the electro-optical properties. Result shows that the addition of MWCNTs not only improves the optical absorption and electrical conductivity, but also reduces the 1/f noise of the films. Percolation phenomenon is observed at MWCNT concentrations of 0.20-0.25 wt%. In this concentration range, the composite films exhibit an abrupt rise of the temperature coefficient of resistance value (-2.93% K-1) and large general thermal parameter, both of which are desirable for applications in uncooled infrared detectors.

19.
Int J Nanomedicine ; 11: 2921-33, 2016.
Article in English | MEDLINE | ID: mdl-27382280

ABSTRACT

BACKGROUND: The objectives of this study were to develop stable cyclosporine A (CsA) ophthalmic micelle solutions for dry-eye syndrome and evaluate their physicochemical properties and therapeutic efficacy. MATERIALS AND METHODS: CsA-micelle solutions (MS-CsA) were created by a simple method with Cremophor EL, ethanol, and phosphate buffer. We investigated the particle size, pH, and osmolarity. In addition, long-term physical and chemical stability for MS-CsA was observed. To confirm the therapeutic efficacy, tear production in dry eye-induced rabbits was evaluated using the Schirmer tear test (STT). When compared to a commercial product, Restasis, MS-CsA demonstrated improvement in goblet-cell density and conjunctival epithelial morphology, as demonstrated in histological hematoxylin and eosin staining. RESULTS: MS-CsA had a smaller particle size (average diameter 14-18 nm) and a narrow size distribution. Physicochemical parameters, such as particle size, pH, osmolarity, and remaining CsA concentration were all within the expected range of 60 days. STT scores significantly improved in MS-CsA treated groups (P<0.05) in comparison to those of the Restasis-treated group. The number of goblet cells for rabbit conjunctivas after the administration of MS-CsA was 94.83±8.38, a significantly higher result than the 65.17±11.51 seen with Restasis. The conjunctival epithelial morphology of dry eye-induced rabbits thinned with loss of goblet cells. However, after 5 days of treatment with drug formulations, rabbit conjunctivas recovered epithelia and showed a relative increase in the number of goblet cells. CONCLUSION: The results of this study indicate the potential use of a novel MS for the ophthalmic delivery of CsA in treating dry eyes.


Subject(s)
Cyclosporine/therapeutic use , Drug Delivery Systems/methods , Dry Eye Syndromes/drug therapy , Micelles , Animals , Cell Count , Cell Shape/drug effects , Conjunctiva/pathology , Cyclosporine/pharmacology , Epithelial Cells/drug effects , Epithelial Cells/pathology , Female , Goblet Cells/drug effects , Goblet Cells/pathology , Hydrogen-Ion Concentration , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/therapeutic use , Male , Ophthalmic Solutions/pharmacology , Ophthalmic Solutions/therapeutic use , Osmolar Concentration , Particle Size , Rabbits , Tears/drug effects , Temperature , Tissue Distribution/drug effects
20.
Int J Pharm ; 503(1-2): 8-15, 2016 Apr 30.
Article in English | MEDLINE | ID: mdl-26899975

ABSTRACT

Risperidone-loaded poly (D,L-lactide-co-glycolide) (PLGA) microspheres were prepared with a suspension-evaporation process with an aqueous suspension containing an in situ-formed aluminum hydroxide inorganic gel (SEP-AL process) and evaluated for encapsulation efficiency, particle size, surface morphology, glass transition temperature, in vitro drug release profile, and in vivo behavior. The SEP-AL microspheres were compared with conventional oil-in-water (O/W) emulsion solvent evaporation method using polyvinylalcohol (PVA) as an emulsifier (CP-PVA process). The microspheres were spherical in shape. DSC measurements showed that risperidone crystallinity was greatly reduced due to the homogeneous distribution of risperidone in PLGA microspheres. In vitro drug release profile from the microspheres showed a sigmoidal pattern of negligible initial burst up to 24h and minimal release (time-lag) for 7 days. After the lag phase, slow release took a place up to 25 days and then rapid release occurred sharply for 1 week. In vivo rat pharmacokinetic profile from the microspheres showed very low blood concentration level at the initial phase (up to 24h) followed by the latent phase up to 21 days. At the 3rd week, main phase started and the blood concentration of the drug increased up to the 5th week, and then gradually decreased. The risperidone-loaded PLGA microspheres produced by SEP-AL process showed excellent controlled release characteristics for the effective treatment of schizophrenia patients.


Subject(s)
Risperidone/administration & dosage , Animals , Antipsychotic Agents/administration & dosage , Antipsychotic Agents/blood , Antipsychotic Agents/chemistry , Antipsychotic Agents/pharmacokinetics , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Dopamine Antagonists/administration & dosage , Dopamine Antagonists/blood , Dopamine Antagonists/chemistry , Dopamine Antagonists/pharmacokinetics , Drug Compounding , Drug Liberation , Lactic Acid/chemistry , Male , Microspheres , Particle Size , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Rats, Sprague-Dawley , Risperidone/blood , Risperidone/chemistry , Risperidone/pharmacokinetics , Serotonin Antagonists/administration & dosage , Serotonin Antagonists/blood , Serotonin Antagonists/chemistry , Serotonin Antagonists/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...