Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 152
Filter
1.
Molecules ; 29(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38338338

ABSTRACT

Liver damage caused by various factors results in fibrosis and inflammation, leading to cirrhosis and cancer. Fibrosis results in the accumulation of extracellular matrix components. The role of STAT proteins in mediating liver inflammation and fibrosis has been well documented; however, approved therapies targeting STAT3 inhibition against liver disease are lacking. This study investigated the anti-fibrotic and anti-inflammatory effects of STAT3 decoy oligodeoxynucleotides (ODN) in hepatocytes and liver fibrosis mouse models. STAT3 decoy ODN were delivered into cells using liposomes and hydrodynamic tail vein injection into 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-fed mice in which liver injury was induced. STAT3 target gene expression changes were verified using qPCR and Western blotting. Liver tissue fibrosis and bile duct proliferation were assessed in animal experiments using staining techniques, and macrophage and inflammatory cytokine distribution was verified using immunohistochemistry. STAT3 decoy ODN reduced fibrosis and inflammatory factors in liver cancer cell lines and DDC-induced liver injury mouse model. These results suggest that STAT3 decoy ODN may effectively treat liver fibrosis and must be clinically investigated.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Hepatitis , Liver Neoplasms , Mice , Animals , Oligodeoxyribonucleotides/pharmacology , Oligodeoxyribonucleotides/metabolism , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Liver , Fibrosis , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Cell Line , Oligonucleotides, Antisense/metabolism , Hepatitis/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism
2.
Mol Ther Nucleic Acids ; 34: 102036, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37799329

ABSTRACT

Atopic dermatitis (AD) is a common inflammatory skin disease caused by an immune disorder. Mast cells are known to be activated and granulated to maintain an allergic reaction, including rhinitis, asthma, and AD. Although hypoxia-inducible factor-1 alpha (HIF-1α) and signal transducer and activator of transcription 5 (STAT5) play crucial roles in mast cell survival and granulation, their effects need to be clarified in allergic disorders. Thus, we designed decoy oligodeoxynucleotide (ODN) synthetic DNA, without open ends, containing complementary sequences for HIF-1α and STAT5 to suppress the transcriptional activities of HIF-1α and STAT5. In this study, we demonstrated the effects of HIF-1α/STAT5 ODN using AD-like in vivo and in vitro models. The HIF-1α/STAT5 decoy ODN significantly alleviated cutaneous symptoms similar to AD, including morphology changes, immune cell infiltration, skin barrier dysfunction, and inflammatory response. In the AD model, it also inhibited mast cell infiltration and degranulation in skin tissue. These results suggest that the HIF-1α/STAT5 decoy ODN ameliorates the AD-like disorder and immunoglobulin E (IgE)-induced mast cell activation by disrupting HIF-1α/STAT5 signaling pathways. Taken together, these findings suggest the possibility of HIF-1α/STAT5 as therapeutic targets and their decoy ODN as a potential therapeutic tool for AD.

3.
Int J Mol Med ; 51(5)2023 May.
Article in English | MEDLINE | ID: mdl-37026512

ABSTRACT

Atherosclerosis is a progressive chronic inflammatory condition that is the cause of most cardiovascular and cerebrovascular diseases. The transcription factor nuclear factor­κB (NF­κB) regulates a number of genes involved in the inflammatory responses of cells that are critical to atherogenesis, and signal transducer and activator of transcription (STAT)3 is a key transcription factor in immunity and inflammation. Decoy oligodeoxynucleotides (ODNs) bind to sequence­specific transcription factors and limit gene expression by interfering with transcription in vitro and in vivo. The present study aimed to investigate the beneficial functions of STAT3/NF­κB decoy ODNs in liposaccharide (LPS)­induced atherosclerosis in mice. Atherosclerotic injuries of mice were induced via intraperitoneal injection of LPS and the mice were fed an atherogenic diet. Ring­type STAT3/NF­κB decoy ODNs were designed and administered via an injection into the tail vein of the mice. To investigate the effect of STAT3/NF­κB decoy ODNs, electrophoretic mobility shift assay, western blot analysis, histological analysis with hematoxylin and eosin staining, Verhoeff­Van Gieson and Masson's trichrome staining were performed. The results revealed that STAT3/NF­κB decoy ODNs were able to suppress the development of atherosclerosis by attenuating morphological changes and inflammation in atherosclerotic mice aortae, and by reducing pro­inflammatory cytokine secretion through inhibition of the STAT3/NF­κB pathway. In conclusion, the present study provided novel insights into the antiatherogenic molecular mechanism of STAT3/NF­κB decoy ODNs, which may serve as an additional therapeutic intervention to combat atherosclerosis.


Subject(s)
Atherosclerosis , NF-kappa B , Animals , Mice , NF-kappa B/metabolism , Lipopolysaccharides , Signal Transduction , Oligodeoxyribonucleotides/pharmacology , Oligodeoxyribonucleotides/therapeutic use , Oligodeoxyribonucleotides/genetics , Inflammation/pathology , Transcription Factors , Atherosclerosis/drug therapy , Atherosclerosis/genetics
4.
Curr Issues Mol Biol ; 45(1): 337-352, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36661510

ABSTRACT

Obstructive uropathy is a clinical condition that can lead to chronic kidney disease. However, treatments that can prevent the progression of renal injury and fibrosis are limited. Farrerol (FA) is a natural flavone with potent antioxidant and anti-inflammatory properties. Here, we investigated the effect of FA on renal injury and fibrosis in a mouse model of unilateral ureteral obstruction (UUO). Mice underwent a sham or UUO operation and received intraperitoneal injections of FA (20 mg/kg) daily for 8 consecutive days. Histochemistry, immunohistochemistry and immunofluorescence staining, TdT-mediated dUTP nick end labeling assay, Western blotting, gene expression analysis, and biochemical tests were performed. FA attenuated renal dysfunction (p < 0.05) and ameliorated renal tubular injury (p < 0.01) and interstitial fibrosis (p < 0.001) in UUO mice. FA alleviated 4-hydroxynonenal expression (p < 0.001) and malondialdehyde levels (p < 0.01) by regulating pro-oxidant and antioxidant enzymes. Apoptosis in the kidneys of UUO mice was inhibited by FA (p < 0.001), and this action was accompanied by decreased expression of cleaved caspase-3 (p < 0.01). Moreover, FA alleviated pro-inflammatory cytokine production (p < 0.001) and macrophage infiltration (p < 0.01) in the kidneys of UUO mice. These results suggest that FA ameliorates renal injury and fibrosis in the UUO model by inhibiting oxidative stress, apoptosis, and inflammation.

5.
Int J Mol Sci ; 23(23)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36499581

ABSTRACT

Parkinson's disease (PD), a neurodegenerative disorder, is characterized by the loss of dopaminergic (DA) neurons. The pathogenesis of PD is associated with several factors including oxidative stress, inflammation, and mitochondrial dysfunction. Ca2+ signaling plays a vital role in neuronal signaling and altered Ca2+ homeostasis has been implicated in many neuronal diseases including PD. Recently, we reported that apamin (APM), a selective antagonist of the small-conductivity Ca2+-activated K+ (SK) channel, suppresses neuroinflammatory response. However, the mechanism(s) underlying the vulnerability of DA neurons were not fully understood. In this study, we investigated whether APM affected 1-methyl-4-phenyl pyridinium (MPP+)-mediated neurotoxicity in SH-SY5Y cells and rat embryo primary mesencephalic neurons. We found that APM decreased Ca2+ overload arising from MPP+-induced neurotoxicity response through downregulating the level of CaMKII, phosphorylation of ERK, and translocation of nuclear factor NFκB/signal transducer and activator of transcription (STAT)3. Furthermore, we showed that the correlation of MPP+-mediated Ca2+ overload and ERK/NFκB/STAT3 in the neurotoxicity responses, and dopaminergic neuronal cells loss, was verified through inhibitors. Our findings showed that APM might prevent loss of DA neurons via inhibition of Ca2+-overload-mediated signaling pathway and provide insights regarding the potential use of APM in treating neurodegenerative diseases.


Subject(s)
Neuroblastoma , Neuroprotective Agents , Neurotoxicity Syndromes , Parkinson Disease , Humans , Rats , Animals , Calcium/metabolism , Apamin/pharmacology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Neuroprotective Agents/pharmacology , Neuroblastoma/metabolism , 1-Methyl-4-phenylpyridinium/toxicity , Dopaminergic Neurons/metabolism , Signal Transduction , Oxidative Stress , Parkinson Disease/metabolism , NF-kappa B/metabolism , Neurotoxicity Syndromes/pathology , Apoptosis , Cell Line, Tumor
6.
Biomolecules ; 12(12)2022 12 12.
Article in English | MEDLINE | ID: mdl-36551286

ABSTRACT

Acne vulgaris has a pathogenesis that involves increased sebum production and perifollicular inflammation. Sterol regulatory element-binding protein-1 (SREBP-1) and peroxisome proliferator activated receptor-γ (PPAR-γ) are transcription factors that regulate numerous genes involved in lipid biosynthesis. To improve a new therapeutic approach, we designed the SREBP/PPAR decoy oligodeoxynucleotide (ODN), a synthetic short DNA containing complementary sequences for the SREBP and PPAR transcription factors. We aim to investigate the beneficial functions and the molecular mechanisms of the synthetic SREBP/PPAR decoy ODN in lipogenic models. C. acnes was intradermally injected with a 1.0 × 107 colony forming unit/20 µL. The synthetic SREBP/PPAR decoy ODN or scrambled decoy ODN (10 µg) was transferred via the mouse tail vein injection. SZ95 cells were transfected with 2 µg of synthetic ODNs. After transfection, the SZ95 cells were cultured in serum-free medium containing 20 ng/µL of insulin-like growth factor-1 (IGF)-1 for 24 h. To investigate the expression of gene and signaling pathways, we performed Western blotting. The distribution of the chimeric decoy ODN was confirmed by EMSA. Lipid levels were assessed by Nile red and Oil Red O staining. The cytokine levels were measured by ELISA kit. This study showed that C. acnes-injected mice and IGF-1-stimulated SZ95 cells exhibited increased expression of SREBP-1 and PPAR-γ compared to the normal controls. In contrast, the administration of the SREBP/PPAR chimeric decoy ODN significantly suppressed the upregulation of lipogenic genes. Furthermore, the SREBP/PPAR decoy ODN decreased the plasma cytokines and cytokine levels of total protein. These results suggested that the SREBP/PPAR decoy ODN exerts its anti-lipogenic effects by regulating lipid metabolism and by inhibiting lipogenesis through the inactivation of the SREBP and PPAR pathways. Therefore, the synthetic SREBP/PPAR ODN demonstrates substantial therapeutic feasibility for the treatment of acne vulgaris.


Subject(s)
Acne Vulgaris , Lipogenesis , Animals , Mice , Lipogenesis/genetics , Oligodeoxyribonucleotides/genetics , PPAR gamma/genetics , PPAR gamma/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Acne Vulgaris/genetics , Cytokines/metabolism , Lipids
7.
Int J Mol Sci ; 23(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36232665

ABSTRACT

The global burden of chronic kidney disease is increasing, and the majority of these diseases are progressive. Special site-targeted drugs are emerging as alternatives to traditional drugs. Oligonucleotides (ODNs) have been proposed as effective therapeutic tools in specific molecular target therapies for several diseases. We designed ring-type non-coding RNAs (ncRNAs), also called mTOR ODNs to suppress mammalian target rapamycin (mTOR) translation. mTOR signaling is associated with excessive cell proliferation and fibrogenesis. In this study, we examined the effects of mTOR suppression on chronic renal injury. To explore the regulation of fibrosis and inflammation in unilateral ureteral obstruction (UUO)-induced injury, we injected synthesized ODNs via the tail vein of mice. The expression of inflammatory-related markers (interleukin-1ß, tumor necrosis factor-α), and that of fibrosis (α-smooth muscle actin, fibronectin), was decreased by synthetic ODNs. Additionally, ODN administration inhibited the expression of autophagy-related markers, microtubule-associated protein light chain 3, Beclin1, and autophagy-related gene 5-12. We confirmed that ring-type ODNs inhibited fibrosis, inflammation, and autophagy in a UUO mouse model. These results suggest that mTOR may be involved in the regulation of autophagy and fibrosis and that regulating mTOR signaling may be a therapeutic strategy against chronic renal injury.


Subject(s)
Renal Insufficiency, Chronic , Ureteral Obstruction , Actins/metabolism , Animals , Autophagy/genetics , Beclin-1/metabolism , Disease Models, Animal , Fibronectins/metabolism , Fibrosis , Inflammation/metabolism , Interleukin-1beta/metabolism , Kidney/metabolism , Mammals/metabolism , Mice , Microtubule-Associated Proteins/metabolism , Oligonucleotides/pharmacology , RNA, Untranslated/metabolism , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/genetics , Sirolimus/pharmacology , Sirolimus/therapeutic use , TOR Serine-Threonine Kinases/metabolism , Tumor Necrosis Factor-alpha/metabolism , Ureteral Obstruction/complications , Ureteral Obstruction/genetics , Ureteral Obstruction/metabolism
8.
Toxins (Basel) ; 14(10)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36287932

ABSTRACT

Streptococcus pyogenes (S. pyogenes) bacteria cause almost all primary skin infections in humans. Bee venom (BV) and melittin (Mel) have multiple effects, including antibacterial and anti-inflammatory activities. This study aims to demonstrate their effects on bacterial mouse skin infection using S. pyogenes. The dorsal skin was tape-stripped, then S. pyogenes was topically applied. BV or Mel were topically applied to the lesion. The tissues were stained with hematoxylin and eosin, while immunohistochemical staining was performed with anti-neutrophil. S. pyogenes-infected skin revealed increased epidermal and dermal layers, but it was reduced in the BV and Mel groups. Finding increased neutrophils in the mice infected with S. pyogenes, but the BV and Mel mice showed decreased expression. These results suggest that BV and Mel treatments could reduce the inflammatory reactions and help improve lesions induced by S. pyogenes skin infection. This study provides additional assessment of the potential therapeutic effects of BV and Mel in managing skin infection caused by S. pyogenes, further suggesting that it could be a candidate for developing novel treatment alternative for streptococcal skin infections.


Subject(s)
Bee Venoms , Skin Diseases, Bacterial , Humans , Mice , Animals , Melitten/pharmacology , Melitten/therapeutic use , Bee Venoms/pharmacology , Bee Venoms/therapeutic use , Streptococcus pyogenes , Eosine Yellowish-(YS) , Hematoxylin , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Skin Diseases, Bacterial/drug therapy , Anti-Bacterial Agents/therapeutic use
9.
Int J Mol Sci ; 23(15)2022 Jul 23.
Article in English | MEDLINE | ID: mdl-35897713

ABSTRACT

Despite emerging evidence suggesting that autophagy occurs during renal interstitial fibrosis, the role of autophagy activation in fibrosis and the mechanism by which autophagy influences fibrosis remain controversial. Transcription factor EB (TFEB) is a master regulator of autophagy-related gene transcription, lysosomal biogenesis, and autophagosome formation. In this study, we examined the preventive effects of TFEB suppression on renal fibrosis. We injected synthesized TFEB decoy oligonucleotides (ODNs) into the tail veins of unilateral ureteral obstruction (UUO) mice to explore the regulation of autophagy in UUO-induced renal fibrosis. The expression of interleukin (IL)-1ß, tumor necrosis factor-α (TNF-α), and collagen was decreased by TFEB decoy ODN. Additionally, TEFB ODN administration inhibited the expression of microtubule-associated protein light chain 3 (LC3), Beclin1, and hypoxia-inducible factor-1α (HIF-1α). We confirmed that TFEB decoy ODN inhibited fibrosis and autophagy in a UUO mouse model. The TFEB decoy ODNs also showed anti-inflammatory effects. Collectively, these results suggest that TFEB may be involved in the regulation of autophagy and fibrosis and that regulating TFEB activity may be a promising therapeutic strategy against kidney diseases.


Subject(s)
Renal Insufficiency, Chronic , Ureteral Obstruction , Animals , Autophagy/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Disease Models, Animal , Fibrosis , Kidney/metabolism , Mice , Oligonucleotides/pharmacology , Renal Insufficiency, Chronic/metabolism , Ureteral Obstruction/metabolism
10.
Int J Mol Sci ; 23(6)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35328573

ABSTRACT

Acne vulgaris is the most common disease of the pilosebaceous unit. The pathogenesis of this disease is complex, involving increased sebum production and perifollicular inflammation. Understanding the factors that regulate sebum production is important in identifying novel therapeutic targets for the treatment of acne. Bee Venom (BV) and melittin have multiple effects including antibacterial, antiviral, and anti-inflammatory activities in various cell types. However, the anti-lipogenic mechanisms of BV and melittin have not been elucidated. We investigated the effects of BV and melittin in models of Insulin-like growth factor-1 (IGF-1) or Cutibacterium acnes (C. acnes)-induced lipogenic skin disease. C. acnes or IGF-1 increased the expression of sterol regulatory element-binding protein-1 (SREBP-1) and proliferator-activated receptor gamma (PPAR-γ), transcription factors that regulate numerous genes involved in lipid biosynthesis through the protein kinase B (Akt)/mammalian target of rapamycin (mTOR)/SREBP signaling pathway. In this study using a C. acnes or IGF-1 stimulated lipogenic disease model, BV and melittin inhibited the increased expression of lipogenic and pro-inflammatory factor through the blockade of the Akt/mTOR/SREBP signaling pathway. This study suggests for the first time that BV and melittin could be developed as potential natural anti-acne agents with anti-lipogenesis, anti-inflammatory, and anti-C. acnes activity.


Subject(s)
Acne Vulgaris , Bee Venoms , Acne Vulgaris/drug therapy , Anti-Inflammatory Agents/pharmacology , Bee Venoms/pharmacology , Humans , Insulin-Like Growth Factor I/pharmacology , Melitten/pharmacology , Propionibacterium acnes , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Sirolimus/pharmacology , Sterol Regulatory Element Binding Protein 1/metabolism , TOR Serine-Threonine Kinases/metabolism
11.
Molecules ; 27(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35164031

ABSTRACT

Renal fibrosis is a common process of various kidney diseases. Autophagy is an important cell biology process to maintain cellular homeostasis. In addition, autophagy is involved in the pathogenesis of various renal disease, including acute kidney injury, glomerular diseases, and renal fibrosis. However, the functional role of autophagy in renal fibrosis remains poorly unclear. The mammalian target of rapamycin (mTOR) plays a negative regulatory role in autophagy. Signal transducer and activator of transcription 3 (STAT3) is an important intracellular signaling that may regulate a variety of inflammatory responses. In addition, STAT3 regulates autophagy in various cell types. Thus, we synthesized the mTOR/STAT3 oligodeoxynucleotide (ODN) to regulate the autophagy. The aim of this study was to investigate the beneficial effect of mTOR/STAT3 ODN via the regulation of autophagy appearance on unilateral ureteral obstruction (UUO)-induced renal fibrosis. This study showed that UUO induced inflammation, tubular atrophy, and tubular interstitial fibrosis. However, mTOR/STAT3 ODN suppressed UUO-induced renal fibrosis and inflammation. The autophagy markers have no statistically significant relation, whereas mTOR/STAT3 ODN suppressed the apoptosis in tubular cells. These results suggest the possibility of mTOR/STAT3 ODN for preventing renal fibrosis. However, the role of mTOR/STAT3 ODN on autophagy regulation needs to be further investigated.


Subject(s)
Autophagy/drug effects , Fibrosis/prevention & control , Kidney/injuries , Oligodeoxyribonucleotides/antagonists & inhibitors , STAT3 Transcription Factor/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Disease Models, Animal
12.
Int J Biol Sci ; 17(14): 3818-3836, 2021.
Article in English | MEDLINE | ID: mdl-34671201

ABSTRACT

Rationale: In intracranial arterial dolichoectasia (IADE) development, the feedback loop between inflammatory cytokines and macrophages involves TNF-α and NF-κB signaling pathways and leads to subsequent MMP-9 activation and extracellular matrix (ECM) degeneration. In this proof-of-concept study, melittin-loaded L-arginine-coated iron oxide nanoparticle (MeLioN) was proposed as the protective measure of IADE formation for this macrophage-mediated inflammation and ECM degeneration. Methods: IADE was created in 8-week-old C57BL/6J male mice by inducing hypertension and elastase injection into a basal cistern. Melittin was loaded on the surface of ION as a core-shell structure (hydrodynamic size, 202.4 nm; polydispersity index, 0.158). Treatment of MeLioN (2.5 mg/kg, five doses) started after the IADE induction, and the brain was harvested in the third week. In the healthy control, disease control, and MeLioN-treated group, the morphologic changes of the cerebral arterial wall were measured by diameter, thickness, and ECM composition. The expression level of MMP-9, CD68, MCP-1, TNF-α, and NF-κB was assessed from immunohistochemistry, polymerase chain reaction, and Western blot assay. Results: MeLioN prevented morphologic changes of cerebral arterial wall related to IADE formation by restoring ECM alterations and suppressing MMP-9 expression. MeLioN inhibited MCP-1 expression and reduced CD68-positive macrophage recruitments into cerebral arterial walls. MeLioN blocked TNF-α activation and NF-κB signaling pathway. In the Sylvian cistern, co-localization was found between the CD68-positive macrophage infiltrations and the MeLioN distributions detected on Prussian Blue and T2* gradient-echo MRI, suggesting the role of macrophage harboring MeLioN. Conclusions: The macrophage infiltration into the arterial wall plays a critical role in the MMP-9 secretion. MeLioN, designed for ION-mediated melittin delivery, effectively prevents IADE formation by suppressing macrophage-mediated inflammations and MMP activity. MeLioN can be a promising strategy preventing IADE development in high-risk populations.


Subject(s)
Cerebral Arteries/pathology , Cerebrovascular Disorders/prevention & control , Inflammation/prevention & control , Macrophages/physiology , Magnetite Nanoparticles/therapeutic use , Melitten/administration & dosage , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Cerebrovascular Disorders/pathology , Chemokine CCL2/antagonists & inhibitors , Chemokine CCL2/metabolism , Disease Models, Animal , Male , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred C57BL , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism
13.
Molecules ; 26(19)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34641472

ABSTRACT

Acute kidney injury (AKI) is a dose-limiting side effect of cisplatin therapy in cancer patients. However, effective therapies for cisplatin-induced AKI are not available. Oxidative stress, tubular cell death, and inflammation are known to be the major pathological processes of the disease. 6-Shogaol is a major component of ginger and exhibits anti-oxidative and anti-inflammatory effects. Accumulating evidence suggest that 6-shogaol may serve as a potential therapeutic agent for various inflammatory diseases. However, whether 6-shogaol exerts a protective effect on cisplatin-induced renal side effect has not yet been determined. The aim of this study was to evaluate the effect of 6-shogaol on cisplatin-induced AKI and to investigate its underlying mechanisms. An administration of 6-shogaol after cisplatin treatment ameliorated renal dysfunction and tubular injury, as shown by a reduction in serum levels of creatinine and blood urea nitrogen and an improvement in histological abnormalities. Mechanistically, 6-shogaol attenuated cisplatin-induced oxidative stress and modulated the renal expression of prooxidant and antioxidant enzymes. Apoptosis and necroptosis induced by cisplatin were also suppressed by 6-shogaol. Moreover, 6-shogaol inhibited cisplatin-induced cytokine production and immune cell infiltration. These results suggest that 6-shogaol exhibits therapeutic effects against cisplatin-induced AKI via the suppression of oxidative stress, tubular cell death, and inflammation.


Subject(s)
Acute Kidney Injury/drug therapy , Antioxidants/pharmacology , Catechols/pharmacology , Cisplatin/toxicity , Zingiber officinale/chemistry , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Animals , Antineoplastic Agents/toxicity , Apoptosis/drug effects , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Oxidative Stress , Protective Agents/pharmacology
14.
Theranostics ; 11(18): 8755-8770, 2021.
Article in English | MEDLINE | ID: mdl-34522210

ABSTRACT

Rationale: Chemoradiation (CRT) is commonly used as an adjuvant or neoadjuvant treatment for colorectal cancer (CRC) patients. However, resistant cells manage to survive and propagate after CRT, increasing the risk of recurrence. Thus, better understanding the mechanism of resistant cancer cells is required to achieve better clinical outcomes. Methods: Here, we explored gene expression profiling of CRC patient tumors to identify therapy resistance genes and discovered that protein tyrosine phosphatase receptor type C (PTPRC), which encodes CD45, was increased in remnant tumor tissues after CRT and correlated with metastasis. Through multiple validations using patient tumors and CRC cell lines, we found for the first time the increase of CD45 expression in CRC (EpCAM+) epithelial cells surviving after CRT. Thus, we investigated the biological role and downstream events of CD45 were explored in human CRC cells and CRC mouse models. Results: Increased CD45 expression in cancer cells in pretreated primary tumors accounts for poor regression and recurrence-free survival in CRT-treated patients. High CD45 expression promotes CRC cell survival upon 5-fluorouracil or radiation treatment, while CD45 depletion sensitizes CRC cells to CRT. Intriguingly, CD45 is preferentially expressed in cancer stem-like cells (CSCs), as determined by spheroid culture and the expression of CSC markers, and is required for the distinct functions of CSCs, such as cancer initiation, repopulation, and metastasis. Mechanistically, CD45 phosphatase activity promotes Wnt transcriptional activity by stabilizing the ß-catenin protein, which collectively enhances stemness and the therapy-resistant phenotype. Conclusions: Our results highlight a novel function of CD45 as a mediator of CRT resistance and provide a potential therapy strategy for CRC therapy.


Subject(s)
Colorectal Neoplasms/metabolism , Leukocyte Common Antigens/genetics , Wnt Signaling Pathway/physiology , Animals , Cell Line, Tumor , Colorectal Neoplasms/physiopathology , Databases, Genetic , Disease Models, Animal , Drug Resistance, Neoplasm/physiology , Gene Expression/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/genetics , Humans , Leukocyte Common Antigens/metabolism , Leukocyte Common Antigens/physiology , Mice , Mice, Nude , Neoplastic Stem Cells/metabolism , Retrospective Studies , Stem Cells/metabolism , Transcriptome/genetics
15.
J Clin Med ; 10(16)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34441989

ABSTRACT

To compare the angle between the external rotation references of the femoral components in the axial plane by gender and lower limb alignment in Korean patients with osteoarthritis (OA). Magnetic resonance (MR) images of 1273 patients were imported into a modeling software and segmented to develop three-dimensional femoral bony and cartilaginous models. The surgical transepicondylar axis (sTEA), posterior condylar axis (PCA), the kinematically aligned axis (KAA), and anteroposterior axis were used as rotational references in the axial plane for mechanically aligned (MA) TKA. The relationship among axes were investigated. Among 1273 patients, 942 were female and 331 were male. According to lower limb alignment, the varus and valgus knee groups comprised 848 and 425 patients, respectively. All measurements, except PCA-sTEA, differed significantly between men and women; all measurements, except PCA-sTEA, did not differ significantly between the varus and valgus knee groups. In elderly Korean patients with OA, rotational alignment of the distal femur showed gender differences, but no differences were seen according to lower limb alignment. The concern for malrotation of femoral components during kinematically aligned TKA is less in Koreans than in Caucasians and relatively less in women than in men. In MA TKA, malrotation of the femoral components can be avoided by setting different rotational alignments for the genders.

16.
J Clin Med ; 10(9)2021 May 04.
Article in English | MEDLINE | ID: mdl-34064317

ABSTRACT

In mechanically aligned (MA) total knee arthroplasty (TKA), the grand piano sign helps surgeons to further ensure the proper external rotation of the femoral component. The goal of this study was to determine the sex-related differences in the shape of the anterior resection surface using 3D magnetic resonance imaging (MRI) models. MRI scans were performed on 267 consecutive patients (202 women and 65 men) with osteoarthritis who underwent TKA in order to reconstruct a 3D model. Virtual anterior condylar resection was performed based on the surgical transepicondylar axis (sTEA), Whiteside's line (WSL), and flexion-extension axis (FEA). On the anterior resection surface, both lateral length (LatL) and medial length (MedL) were measured, and the ratio between the two (MedL/LatL) was calculated. The mediolateral width of the distal femur (ML) and anterior resection surface (M'L') were measured, and the ratio between the M'L' and ML (M'L'/ML) was calculated. Both the lateral deviation (LD) and the ratio between LD and ML (LD/ML) were also determined. Morphological classification of the anterior resection surface was conducted based on the presence of a definite medial peak. When based on the sTEA or WSL, the MedL/LatL of female subjects was significantly greater than that of male subjects (p < 0.001 and p < 0.05, respectively). The MedL/LatL of the FEA was consistently larger than that obtained using the sTEA or WSL. Among female subjects, the MedL/LatL of the sTEA was significantly greater than that of the WSL, although this was not the case in either the total study population or the male subjects alone. When based on the sTEA, the M'L'/ML was statistically greater in the female subjects (p < 0.01). The LD was greater in the male subjects (p < 0.01), but there was no difference between the male and female subjects when comparing the LD/ML (p = 0.93). The proportion of double- and single-peak types was not significantly different between the sexes (p = 0.196). Surgeons should be aware that the shape of the anterior resection surface may differ depending on the sex of the patient. The results of this study provide more consistent surgical outcomes as well as fundamental anatomical data for designing suitable prostheses applicable to the Korean population.

17.
J Mol Med (Berl) ; 99(9): 1265-1277, 2021 09.
Article in English | MEDLINE | ID: mdl-34031696

ABSTRACT

Renal fibrosis is a progressive and chronic process that influences kidneys with chronic kidney disease (CKD), irrespective of cause, leading to irreversible failure of renal function and end-stage kidney disease. Among the signaling related to renal fibrosis, transforming growth factor-ß1 (TGF-ß1) signaling is a major pathway that induces the activation of myofibroblasts and the production of extracellular matrix (ECM) molecules. Apamin, a component of bee venom (BV), has been studied in relation to various diseases. However, the effect of apamin on renal interstitial fibrosis has not been investigated. The aim of this study was to estimate the beneficial effect of apamin in unilateral ureteral obstruction (UUO)-induced renal fibrosis and TGF-ß1-induced renal fibroblast activation. This study revealed that obstructive kidney injury induced an inflammatory response, tubular atrophy, and ECM accumulation. However, apamin treatment suppressed the increased expression of fibrotic-related genes, including α-SMA, vimentin, and fibronectin. Administration of apamin also attenuated the renal tubular cells injury and tubular atrophy. In addition, apamin attenuated fibroblast activation, ECM synthesis, and inflammatory cytokines such as TNF-α, IL-1ß, and IL-6 by suppressing the TGF-ß1-canonical and non-canonical signaling pathways. This study showed that apamin inhibits UUO-induced renal fibrosis in vivo and TGF-ß1-induced renal fibroblasts activation in vitro. Apamin inhibited the inflammatory response, tubular atrophy, ECM accumulation, fibroblast activation, and renal interstitial fibrosis through suppression of TGF-ß1/Smad2/3 and STAT3 signaling pathways. These results suggest that apamin might be a potential therapeutic agent for renal fibrosis. KEY MESSAGES: UUO injury can induce renal dysfunction; however, apamin administration prevents renal failure in UUO mice. Apamin inhibited renal inflammatory response and ECM deposition in UUO-injured mice. Apamin suppressed the activation of myofibroblasts in vivo and in vitro. Apamin has the anti-fibrotic effect on renal fibrosis via regulation of TGF-ß1 canonical and non-canonical signaling.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antifibrotic Agents/pharmacology , Apamin/pharmacology , Kidney Diseases/prevention & control , Kidney/drug effects , STAT3 Transcription Factor/metabolism , Transforming Growth Factor beta1/metabolism , Ureteral Obstruction/drug therapy , Animals , Cell Line , Cytokines/metabolism , Disease Models, Animal , Fibrosis , Kidney/metabolism , Kidney/pathology , Kidney Diseases/etiology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Male , Mice, Inbred C57BL , Phosphorylation , Rats , Signal Transduction , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Ureteral Obstruction/complications , Ureteral Obstruction/metabolism , Ureteral Obstruction/pathology
18.
Biomedicines ; 9(4)2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33806080

ABSTRACT

Autophagy in the proximal tubules may promote fibrosis by activating tubular cell death, interstitial inflammation, and the production of pro-fibrotic factors. The signal transducer and activator of transcription 3 (STAT3) is activated as a potential transcription factor, which mediates the stimulation of renal fibrosis. We investigated the role of the STAT3 in autophagy and its effect on the prevention of interstitial renal fibrosis. In this study, we use synthesized STAT3 decoy oligonucleotides (ODN), which were injected into the tail veins of unilateral ureteral obstruction (UUO) mice, to explore the regulation of autophagy in UUO-induced renal fibrosis. The expression of interleukin-6 (IL-6), interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), and collagen were decreased by STAT3 decoy ODN. The autophagy markers microtubule-associated protein light chain 3 (LC3) and fibronectin, were identified through immunofluorescent staining, indicating that they were reduced in the group injected with ODN. The expressions of LC3, Beclin1, p62, and autophagy-related 5-12 (Atg5-12) and hypoxia inducible factor-1α (HIF-1α) were inhibited in the ODN injection group. We determined the inhibitory effect of autophagy in chronic kidney disease and confirmed that STAT3 decoy ODN effectively inhibited autophagy by inhibiting the expression of STAT3 transcription factors in the UUO group.

19.
Antioxidants (Basel) ; 9(12)2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33327548

ABSTRACT

Emerging evidence suggests that epigenetic mechanisms such as histone modification are crucially involved in the pathophysiology of acute kidney injury (AKI). The histone acetyltransferase p300 regulates several biological processes through the acetylation of histones or transcription factors. However, the role of p300 in cisplatin-induced AKI remains poorly understood. Therefore, we investigated the effects of garcinol, a potent p300 inhibitor, on cisplatin-induced AKI and explored the mechanisms. Administration of garcinol significantly reversed the upregulation of p300 and increased acetylation of histone H3, along with amelioration of renal dysfunction and histopathological injury in the kidneys of cisplatin-injected mice. Garcinol also attenuated oxidative stress and reduced expression of pro-oxidant enzymes. In addition, garcinol reduced the elevated production of cytokines and chemokines and suppressed immune cell accumulation together with downregulation of vascular adhesion molecules. These beneficial effects of garcinol were associated with a reduction in acetylation of the p65 subunit of nuclear factor kappa-B. Further, garcinol significantly inhibited apoptosis and caspase-3 activation, with a decrease in p53 acetylation in cisplatin-injected mice. Taken together, we demonstrated that the inhibition of p300 by garcinol ameliorated cisplatin-induced renal injury, presumably through epigenetic mechanisms. These results suggest that garcinol might be a potential preventive agent for cisplatin-induced AKI.

20.
Biomedicines ; 8(12)2020 Dec 06.
Article in English | MEDLINE | ID: mdl-33291262

ABSTRACT

Cisplatin is an effective chemotherapeutic agent, but its clinical use is frequently limited by its nephrotoxicity. The pathogenesis of cisplatin-induced acute kidney injury (AKI) remains incompletely understood, but oxidative stress, tubular cell death, and inflammation are considered important contributors to cisplatin-induced renal injury. Kahweol is a natural diterpene extracted from coffee beans and has been shown to possess anti-oxidative and anti-inflammatory properties. However, its role in cisplatin-induced nephrotoxicity remains undetermined. Therefore, we investigated whether kahweol exerts a protective effect against cisplatin-induced renal injury. Additionally, its mechanisms were also examined. Administration of kahweol attenuated renal dysfunction and histopathological damage together with inhibition of oxidative stress in cisplatin-injected mice. Increased expression of nicotinamide adenine dinucleotide phosphate oxidase 4 and decreased expression of manganese superoxide dismutase and catalase after cisplatin treatment were significantly reversed by kahweol. Moreover, kahweol inhibited cisplatin-induced apoptosis and necroptosis in the kidneys. Finally, kahweol reduced inflammatory cytokine production and immune cell accumulation together with suppression of nuclear factor kappa-B pathway and downregulation of vascular adhesion molecules. Together, these results suggest that kahweol ameliorates cisplatin-induced renal injury via its pleiotropic effects and might be a potential preventive option against cisplatin-induced nephrotoxicity.

SELECTION OF CITATIONS
SEARCH DETAIL
...