Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 6(10): 7491-7, 2014 May 28.
Article in English | MEDLINE | ID: mdl-24779525

ABSTRACT

In this work, Au@Cu2O core-shell nanoparticles (NPs) were synthesized by simple solution route and applied for CO sensing applications. Au@Cu2O core-shell NPs were formed by the deposition of 30-60 nm Cu2O shell layer on Au nanorods (NRs) having 10-15 nm width and 40-60 nm length. The morphology of Au@Cu2O core-shell NPs was tuned from brick to spherical shape by tuning the pH of the solution. In the absence of Au NRs, cubelike Cu2O NPs having ∼200 nm diameters were formed. The sensor having Au@Cu2O core-shell layer exhibited higher CO sensitivity compared to bare Cu2O NPs layer. Tuning of morphology of Au@Cu2O core-shell NPs from brick to spherical shape significantly lowered the air resistance. Transition from p- to n-type response was observed for all devices below 150 °C. It was demonstrated that performance of sensor depends not only on the electronic sensitization of Au NRs but also on the morphology of the Au@Cu2O core-shell NPs.

2.
Nanoscale ; 6(1): 581-8, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24241354

ABSTRACT

Au@Cu2O core-shell nanoparticles (NPs) were synthesized by a solution method at room temperature and applied for gas sensor applications. Transmission electron microscopy (TEM) images showed the formation of Au@Cu2O core-shell NPs, where 12-15 nm Au NPs were covered with 60-30 nm Cu2O shell layers. The surface plasmon resonance (SPR) peak of Au NPs was red-shifted (520-598 nm) after Cu2O shell formation. The response of Au@Cu2O core-shell NPs was higher than that of bare Cu2O NPs to CO at different temperatures and concentrations. Similarly, the response of Au@Cu2O core-shell NPs was higher than that of bare Cu2O NPs for NO2 gas at low temperature. The improved performance of Au@Cu2O core-shell NPs was attributed to the pronounced electronic sensitization, high thermal stability and low screening effect of Au NPs.


Subject(s)
Copper/chemistry , Electrochemical Techniques , Gases/analysis , Gold/chemistry , Metal Nanoparticles/chemistry , Nitric Oxide/analysis , Electrodes , Particle Size , Surface Plasmon Resonance , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...