Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nanoscale Res Lett ; 10(1): 356, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26370131

ABSTRACT

The light output power of AlGaInP-based vertical-injection light-emitting diodes (VI-LEDs) can be enhanced significantly using n-AlGaInP nanopillars. n-AlGaInP nanopillars, ~200 nm in diameter, were produced using SiO2 nanopillars as an etching mask, which were fabricated from self-assembled tin-doped indium oxide (ITO)-based nanodots formed by the wet etching of as-deposited ITO films. The AlGaInP-based VI-LEDs with the n-AlGaInP nanopillars provided 25 % light output power enhancement compared to VI-LEDs with a surface-roughened n-AlGaInP because of the reduced total internal reflection by the nanopillars at the n-AlGaInP/air interface with a large refractive index difference of 1.9.

2.
Opt Express ; 22 Suppl 3: A790-9, 2014 May 05.
Article in English | MEDLINE | ID: mdl-24922386

ABSTRACT

Efficiency droop is a major obstacle facing high-power application of InGaN/GaN quantum-well (QW) light-emitting diodes (LEDs). In this paper, we report the suppression of efficiency droop induced by the process of density-activated defect recombination in nanorod structures of a-plane InGaN/GaN QWs. In the high carrier density regime, the retained emission efficiency in a dry-etched nanorod sample is observed to be over two times higher than that in its parent QW sample. We further argue that such improvement is a net effect that the lateral carrier confinement overcomes the increased surface trapping introduced during fabrication.

3.
J Nanosci Nanotechnol ; 12(5): 4265-8, 2012 May.
Article in English | MEDLINE | ID: mdl-22852387

ABSTRACT

InGaN/GaN based nano-pillar light emitting diodes (LEDs) with a diameter of 200-300 nm and a height of 500 nm are fabricated by inductively coupled plasma etching using self-assembled ITO nano-dots as etching mask, which were produced by wet etching of the as-deposited ITO films. The peak PL intensity of the nano-pillar LEDs was significantly higher than that of the as-grown planar LEDs, which can be attributed to the improvement of external quantum efficiency of the nano-pillar LEDs due to the large sidewall of the nano-pillars. We have also demonstrated electrical pumping of the InGaN/GaN based nano-pillar LEDs with a self-aligned TiO2 layer as a passivation of sidewall of the nano-pillars.

4.
Opt Express ; 20(12): 13478-87, 2012 Jun 04.
Article in English | MEDLINE | ID: mdl-22714375

ABSTRACT

We investigate the effects of reduced exciton diffusion on the emission properties in InGaN/GaN multiple-quantum-well nanorods. Time-resolved photoluminescence spectra are recorded and compared in dry-etched InGaN/GaN nanorods and parent multiple quantum wells at various temperatures with carrier density in different regimes. Faster carrier recombination and absence of delayed rise in the emission dynamics are found in nanorods. Many effects, including surface damages and partial relaxation of the strain, may cause the faster recombination in nanorods. Together with these enhanced carrier recombination processes, the reduced exciton diffusion may induce the different temperature-dependent emission dynamics characterized by the delayed rise in time-resolved photoluminescence spectra.

5.
Opt Express ; 20 Suppl 2: A333-9, 2012 Mar 12.
Article in English | MEDLINE | ID: mdl-22418683

ABSTRACT

We present in this communication our study of the nonradiative energy transfer between colloidal quantum dot (QD) phosphors and nitride nanopillar light emitting diodes (LEDs). An epitaxial p-i-n InGaN/GaN multiple quantum-well (QW) heterostructure was patterned and dry-etched to form dense arrays of nanopillars using a novel etch mask consisting of self-assembled In3Sn clusters. Colloidal QD phosphors have been deposited into the gaps between the nanopillars, leading to sidewall coupling between the QDs and InGaN QW emitters. In this approach, close QW-QD contact and a low-resistance design of the LED contact layer were achieved simultaneously. Strong non-radiative energy transfer was observed from the InGaN QW to the colloidal QD phosphors, which led to a 263% enhancement in effective internal quantum efficiency for the QDs incorporated in the nanopillar LEDs, as compared to those deposited over planar LED structures. Time-resolved photoluminescence was used to characterize the energy transfer process between the QW and QDs. The measured rate of non-radiative QD-QW energy-transfer agrees well with the value calculated from the quantum efficiency data for the QDs in the nanopillar LED.

6.
J Nanosci Nanotechnol ; 11(5): 4484-7, 2011 May.
Article in English | MEDLINE | ID: mdl-21780482

ABSTRACT

We have demonstrated that the light extraction efficiency of the InGaN based multi-quantum well light-emitting diodes (LEDs) can be improved by using a single die growth (SDG) method. The SDG was performed by patterning the n-GaN and sapphire substrate with a size of single chip (600 x 250 microm2) by using a laser scriber, followed by the regrowth of the n-GaN and LED structures on the laser patterned n-GaN. We fabricated lateral LED chips having the SDG structures (SDG-LEDs), in which the thickness of the regrown n-GaN was varied from 2 to 6 microm. For comparison, we also fabricated conventional LED chips without the SDG structures. The SDG-LEDs showed lower operating voltage when compared to the conventional LEDs. In addition, the output power of the SDG-LEDs was significantly higher than that of the conventional LEDs. From optical ray tracing simulations, the increase in the thickness and sidewall angle of the regrown n-GaN and LED structures may enhance photon escapes from the tilted facets of the regrown n-GaN, followed by the increase in light output power and extraction efficiency of the SDG-LEDs.

7.
J Nanosci Nanotechnol ; 10(5): 3254-9, 2010 May.
Article in English | MEDLINE | ID: mdl-20358934

ABSTRACT

Interfacial microstructure and elemental diffusion of Cu-doped indium oxide (CIO)/indium tin oxide (ITO) ohmic contacts to p-type GaN for light-emitting diodes (LEDs) were investigated using cross-sectional transmission electron microscopy (XTEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction. The CIO/ITO contacts gave specific contact resistances of approximately 10(-4) omegacm2 and transmittance greater than 95% at a wavelength of 405 nm when annealed at 630 degrees C for 1 min in air. After annealing at 630 degrees C, multi-component oxides composed of Ga2O3-In2O3, Ga2O3-CuO, and In2O3-CuO formed at the interface between p-GaN and ITO. Formation of multi-component oxides reduced the barrier height between p-GaN and ITO due to their higher work functions than that of ITO, and caused Ga in the GaN to diffuse into the CIO/ITO layer, followed by generation of acceptor-like Ga vacancies near the GaN surface, which lowered contact resistivity of the CIO/ITO contacts to p-GaN after the annealing.

8.
Cancer Lett ; 264(1): 54-62, 2008 Jun 08.
Article in English | MEDLINE | ID: mdl-18423983

ABSTRACT

Overexpression of several aquaporins has been reported in different types of human cancer but the role of AQPs in human carcinogenesis has not yet been clearly defined. Here, we demonstrate that ectopic expression of human AQP5 (hAQP5), a water channel expressed in lung, salivary glands, and kidney, induces many phenotypic changes characteristic of transformation both in vitro and in vivo. Furthermore, the cell proliferative ability of AQP5 appears to be dependent upon the phosphorylation of a cAMP-protein kinase (PKA) consensus site located in a cytoplasmic loop of AQP5. In addition, phosphorylation of the PKA consensus site was found to be phosphorylated preferentially in tumors. These findings altogether indicate that hAQP5 plays an important role in human carcinogenesis and, furthermore, provide an attractive therapeutic target.


Subject(s)
Aquaporin 5/metabolism , Cell Transformation, Neoplastic , Neoplasms/drug therapy , Neoplasms/metabolism , Proto-Oncogene Proteins/metabolism , Animals , Aquaporin 5/drug effects , Aquaporin 5/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Transformation, Neoplastic/genetics , Humans , Mice , NIH 3T3 Cells , Neoplasms/genetics , Phosphorylation , Proto-Oncogene Proteins/drug effects , RNA, Small Interfering/pharmacology , Up-Regulation/genetics
9.
Biochem Biophys Res Commun ; 354(4): 913-8, 2007 Mar 23.
Article in English | MEDLINE | ID: mdl-17276395

ABSTRACT

GDF15 is a transcriptional target gene for p53 and its family members, p63 and p73. Its promoter region contains two p53-type response elements, RE1 and RE2, and RE2 confers p53-specific transactivation. RE2 contains several mismatches from the canonical p53 response element (RRRCWWGYYY). Two mismatches in the RRR span and T base of the RE2 core sequence in the most 3' quarter-site are critical for inhibiting the binding affinity to p63 and p73 and corresponding promoter activity. Our results strongly suggest that differential DNA-binding affinities between p53 family member proteins act, at least in part, to confer specific target gene activation.


Subject(s)
Bone Morphogenetic Proteins/genetics , Promoter Regions, Genetic/physiology , Response Elements/physiology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/physiology , Amino Acid Sequence , Base Sequence , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Growth Differentiation Factor 15 , Humans , Nuclear Proteins/metabolism , Osteosarcoma/metabolism , Response Elements/genetics , Trans-Activators/metabolism , Transcription Factors , Transcriptional Activation , Tumor Protein p73 , Tumor Suppressor Proteins/metabolism
10.
Mol Cells ; 19(1): 67-73, 2005 Feb 28.
Article in English | MEDLINE | ID: mdl-15750342

ABSTRACT

Isoflavones are synthesized by isoflavone synthases via the phenylpropanoid pathway in legumes. We have cloned two isoflavone synthase genes, IFS1 and IFS2, from a total of 18 soybean cultivars. The amino acid residues of the proteins that differed between cultivars were dispersed over the entire coding region. However, amino acid sequence variation did not occur in conserved domains such as the ERR triad region, except that one conserved amino acid was changed in the IFS2 protein of the GS12 cultivar (R374G) and the IFS1 proteins of the 99M06 and Soja99s65 cultivars (A109T, F105I). In three cultivars (99M06, 99M116, and Simheukpi), most of amino acid changes were such that the difference between the amino acid sequences of IFS1 and IFS2 was reduced. The expression profiles of three enzymes that convert naringenin to the isoflavone, genistein, chalcone isomerase (CHI), isoflavone synthase (IFS) and flavanone 3-hydroxylase (F3H) were examined. In general, IFS mRNA was more abundant in etiolated seedlings than mature plants whereas the levels of CHI and F3H mRNAs were similar in the two stages. During seed development, IFS was expressed a little later than CHI and F3H but expression of these three genes was barely detectable, if at all, during later seed hardening. In addition, we found that the levels of CHI, F3H, and IFS mRNAs were under circadian control. We also showed that IFS was induced by wounding and by application of methyl jasmonate to etiolated soybean seedlings.


Subject(s)
Glycine max/enzymology , Glycine max/genetics , Oxygenases/biosynthesis , Oxygenases/genetics , Base Sequence , Circadian Rhythm , Enzyme Induction , Gene Expression Regulation, Enzymologic , Genes, Plant , Intramolecular Lyases/biosynthesis , Mixed Function Oxygenases/biosynthesis , Molecular Sequence Data , Polymorphism, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...