Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Extracell Vesicles ; 12(5): e12325, 2023 05.
Article in English | MEDLINE | ID: mdl-37140946

ABSTRACT

People exposed to radiation in cancer therapy and nuclear accidents are at increased risk of cardiovascular outcomes in long-term survivors. Extracellular vesicles (EVs) are involved in radiation-induced endothelial dysfunction, but their role in the early stage of vascular inflammation after radiation exposure remains to be fully understood. Herein, we demonstrate that endothelial cell-derived EVs containing miRNAs initiate monocyte activation in radiation-induced vascular inflammation. In vitro co-culture and in vivo experimental data showed that endothelial EVs can be sensitively increased by radiation exposure in a dose-dependent manner, and stimulate monocytes releasing monocytic EVs and adhesion to endothelial cells together with an increase in the expression of genes encoding specific ligands for cell-cell interaction. Small RNA sequencing and transfection using mimics and inhibitors explained that miR-126-5p and miR-212-3p enriched in endothelial EVs initiate vascular inflammation by monocyte activation after radiation exposure. Moreover, miR-126-5p could be detected in the circulating endothelial EVs of radiation-induced atherosclerosis model mice, which was found to be tightly correlated with the atherogenic index of plasma. In summary, our study showed that miR-126-5p and miR-212-3p present in the endothelial EVs mediate the inflammatory signals to activate monocytes in radiation-induced vascular injury. A better understanding of the circulating endothelial EVs content can promote their use as diagnostic and prognostic biomarkers for atherosclerosis after radiation exposure.


Subject(s)
Atherosclerosis , Extracellular Vesicles , MicroRNAs , Animals , Mice , Monocytes/metabolism , Extracellular Vesicles/metabolism , Endothelial Cells/metabolism , MicroRNAs/metabolism , Atherosclerosis/etiology , Inflammation/metabolism
2.
Int J Mol Sci ; 23(23)2022 Nov 27.
Article in English | MEDLINE | ID: mdl-36499155

ABSTRACT

Radiation-induced gastrointestinal (GI) damage is one of the critical factors that serve as basis for the lethality of nuclear accidents or terrorism. Further, there are no Food and Drug Administration-approved agents available to mitigate radiation-induced intestinal injury. Although pravastatin (PS) has been shown to exhibit anti-inflammatory and epithelial reconstructive effects following radiation exposure using mouse and minipig models, the treatment failed to improve the survival rate of high-dose irradiated intestinal injury. Moreover, we previously found that metformin (MF), a common drug used for treating type 2 diabetes mellitus, has a mitigating effect on radiation-induced enteropathy by promoting stem cell properties. In this study, we investigated whether the combined administration of PS and MF could achieve therapeutic effects on acute radiation-induced intestinal injury in mouse and minipig models. We found that the combined treatment markedly increased the survival rate and attenuated histological damage in a radiation-induced intestinal injury mouse model, in addition to epithelial barrier recovery, anti-inflammatory effects, and improved epithelial proliferation with stem cell properties. Furthermore, in minipig models, combined treatment with PS and MF ameliorates gross pathological damage in abdominal organs and attenuated radiation-induced intestinal histological damage. Therefore, the combination of PS and MF effectively alleviated radiation-induced intestinal injury in the mouse and minipig models. We believe that the combined use of PS and MF is a promising therapeutic approach for treating radiation-induced intestinal injury.


Subject(s)
Diabetes Mellitus, Type 2 , Intestinal Diseases , Metformin , Radiation Injuries , Mice , Animals , Swine , Swine, Miniature , Pravastatin/pharmacology , Pravastatin/therapeutic use , Metformin/pharmacology , Metformin/therapeutic use , Intestines
3.
Int J Mol Sci ; 23(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35955523

ABSTRACT

Radiation-induced cutaneous ulcers are a challenging medical problem for patients receiving radiation therapy. The inhibition of cell senescence has been suggested as a prospective strategy to prevent radiation ulcers. However, there is no effective treatment for senescent cells in radiation ulcers. In this study, we investigated whether zileuton alleviated radiation-induced cutaneous ulcer by focusing on cell senescence. We demonstrate increased cell senescence and senescence-associated secretory phenotype (SASP) in irradiated dermal fibroblasts and skin tissue. The SASP secreted from senescent cells induces senescence in adjacent cells. In addition, 5-lipoxygenase (5-LO) expression increased in irradiated dermal fibroblasts and skin tissue, and SASP and cell senescence were regulated by 5-LO through p38 phosphorylation. Finally, the inhibition of 5-LO following treatment with zileuton inhibited SASP and mitigated radiation ulcers in animal models. Our results demonstrate that inhibition of SASP from senescent cells by zileuton can effectively mitigate radiation-induced cutaneous ulcers, indicating that inhibition of 5-LO might be a viable strategy for patients with this condition.


Subject(s)
Fibroblasts , Ulcer , Animals , Cellular Senescence , Fibroblasts/metabolism , Hydroxyurea/analogs & derivatives , Phenotype , Rodentia , Senescence-Associated Secretory Phenotype , Ulcer/metabolism
4.
J Immunother ; 45(1): 1-12, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34545011

ABSTRACT

Breast cancer cells often metastasize to bone. Accumulating evidence suggests that inhibiting the receptor activator of nuclear factor-κB ligand (RANKL) not only leads to reduced bone metastasis of breast cancer but also has antitumoral effects. Here, we used mutant receptor activator of nuclear factor-κB ligand (RANKLM) as a vaccine for active immunization to induce antibodies for immunotherapy of bone metastatic cancer. We investigated whether anti-RANKL antibodies inhibit osteolytic bone metastasis in vitro and in a murine model. MC3T3 cells stimulated by MDA-MB-231 culture medium secreted growth differentiation factor-15 (GDF-15), which induced the nuclear factor-κB signaling cascade. In addition, RANKLM treatment-induced reduction of intraosseous growth of MDA-MB-231 cells correlated with decreased GDF-15 expression, a reduced number of osteolytic lesions, and slower tumor progression. In addition, vaccination with RANKLM led to significant improvement in overall survival and skeletal metastasis in tumor-bearing mice. Induction of anti-RANKL antibodies by RANKLM decreased GDF-15 production by deactivating nuclear factor-κB signaling, which in turn inhibited metastasis of MDA-MB-231 cells to bone. Taken together, the results demonstrate a role for RANKLM immunization in preventing bone metastasis of breast cancer.


Subject(s)
Breast Neoplasms , RANK Ligand , Animals , Breast Neoplasms/therapy , Cell Line, Tumor , Female , Humans , Immunization , Mice , Osteoclasts , Vaccination
5.
Sci Rep ; 11(1): 12186, 2021 06 09.
Article in English | MEDLINE | ID: mdl-34108600

ABSTRACT

Prostate cancer (PCa) morbidity in the majority of patients is due to metastatic events, which are a clinical obstacle. Therefore, a better understanding of the mechanism underlying metastasis is imperative if we are to develop novel therapeutic strategies. Receptor activator of nuclear factor kappa-B (NF-κB) ligand (RANKL) regulates bone remodelling. Thus, agents that suppress RANKL signalling may be useful pharmacological treatments. Here, we used preclinical experimental models to investigate whether an inactive form of RANKL affects bone metastasis in RANKL-induced PCa. RANKL was associated with epithelial-mesenchymal transition (EMT) and expression of metastasis-related genes in PC3 cells. Therefore, we proposed a strategy to induce anti-cytokine antibodies using mutant RANKL as an immunogen. RANKL promoted migration and invasion of PC3 cells through EMT, and induced a significant increase in binding of ß-catenin to TCF-4, an EMT-induced transcription factor in PCa cells, via mitogen-activated protein kinase and ß-catenin/TCF-4 signalling. Thus, RANKL increased EMT and the metastatic properties of PC3 cells, suggesting a role as a therapeutic target to prevent PCa metastasis. Treatment with mutant RANKL reduced EMT and metastasis of PC3 PCa cells in an experimental metastasis model. Thus, mutant RANKL could serve as a potential vaccine to prevent and treat metastatic PCa.


Subject(s)
Antibodies, Monoclonal/pharmacology , Bone Neoplasms/prevention & control , Epithelial-Mesenchymal Transition , Prostatic Neoplasms/drug therapy , RANK Ligand/antagonists & inhibitors , Animals , Apoptosis , Bone Neoplasms/immunology , Bone Neoplasms/metabolism , Bone Neoplasms/secondary , Cell Movement , Cell Proliferation , Humans , Immunization , Male , Mice , Prostatic Neoplasms/immunology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , RANK Ligand/immunology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
6.
Adv Healthc Mater ; 10(11): e2100069, 2021 06.
Article in English | MEDLINE | ID: mdl-33951320

ABSTRACT

Despite decades of biomedical advances, the colonization of implant devices with bacterial biofilms is still a leading cause of implant failure. Clearly, new strategies and materials that suppress both initial and later stage bacterial colonization are required in this context. Ideal would be the implementation of a bactericidal functionality in the implants that is temporally and spatially triggered in an autonomous fashion at the infection site. Herein, the fabrication and validation of functional titanium-based implants with triggered antibiotic release function afforded via an intelligent polymer coating is reported. In particular, thermo-responsive poly(di(ethylene glycol) methyl ether methacrylate) (PDEGMA) brushes on titanium implants synthesized via a surface-initiated atom transfer radical polymerization with activators regenerated through the electron transfer technique (ARGET ATRP) allows for a controlled and thermally triggered release of the antibiotic levofloxacin at the wound site. Antibiotic loaded brushes are investigated as a function of thickness, loading capacity for antibiotics, and temperature. At temperatures of the infection site >37 °C the lower critical solution temperature behavior of the brushes afforded the triggered release. Hence, in addition to the known antifouling effects, the PDEGMA coating ensured enhanced bactericidal effects, as demonstrated in initial in vivo tests with rodents infected with Staphylococcus aureus.


Subject(s)
Polymers , Titanium , Biofilms , Drug Liberation , Methacrylates
7.
Clin Transl Med ; 11(3): e368, 2021 03.
Article in English | MEDLINE | ID: mdl-33784004

ABSTRACT

BACKGROUND: The discovery of receptor activator of nuclear factor-ĸB ligand (RANKL) as the final effector in the pathogenesis of osteoporosis has led to a better understanding of bone remodeling. When RANKL binds to its receptor (RANK), osteoclastic differentiation and activation are initiated. Herein, we propose a strategy using a novel RANKL variant as a competitive inhibitor for RANKL. The RANKL variant activates LGR4 signaling, which competitively regulates RANK and acts as an immunogen that induces anti-RANKL antibody production. METHODS: We modified the RANK-binding site on RANKL using minimal amino acid changes in the RANKL complex and its counterpart receptor RANK and tried to evaluate the inhibitory effects on osteoclastogenesis. RESULTS: The novel RANKL variant did not bind RANK in osteoclast progenitor cells, but activated LGR4 through the GSK3-ß signaling pathway, thereby suppressing activated T cell cytoplasmic nuclear factor calcineurin-dependent 1 (NFATc1) expression and activity during osteoclastogenesis. Our RANKL variant generated high levels of RANKL-specific antibodies, blocked osteoclastogenesis, and inhibited osteoporosis in ovariectomized mouse models. Generated anti-RANKL antibodies showed a high inhibitory effect on osteoclastogenesis in vivo and in vitro. CONCLUSIONS: We observed that the novel RANKL indeed blocks RANKL via LGR4 signaling and generates anti-RANKL antibodies, demonstrating an innovative strategy in the development of general immunotherapy.


Subject(s)
Bone Resorption/metabolism , Osteoclasts/metabolism , Osteogenesis/physiology , Osteoporosis/metabolism , Osteoporosis/prevention & control , RANK Ligand/metabolism , Animals , Cell Differentiation , Mice , Vaccines
8.
Oncol Lett ; 18(2): 1189-1198, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31423179

ABSTRACT

Prostate cancer (PC) metastasizes to the bone, and a small number of cancer cells, described as cancer stem cells (CSCs), have the ability to differentiate into tumor cells. CSCs are responsible for tumor recurrence and metastases. In the present study, we examined whether ectopic overexpression of CD133, a key molecule maintaining the stability of CSCs in the human PC cell line, LnCaP, caused bone metastasis in a mouse model. Ectopic overexpression of CD133 was induced in LnCaP cells, and CSC-related protein expression was measured. Furthermore, a colony-forming assay was performed to compare results against the blank green fluorescent protein-expressing cells. Furthermore, epithelial to mesenchymal transition-related protein expression, cell migration and wound healing were investigated. To assess the role of CD133 in bone metastasis, CD133-overexpressing LnCaP cells were inoculated into mice via intracardiac injection, and bone metastasis was assessed via histological and immunohistochemical study. In addition, cytokine arrays were used to determine the cytokines involved in bone metastasis. Ectopic overexpression of CD133 in LnCaP cells increased CSC properties such as Oct-4 and Nanog expression and colony-forming ability. Furthermore, epithelial-to-mesenchymal transition (EMT) properties, including decreased E-cadherin and increased vimentin expression, wound gap distance, and cell migration increased. CD133 overexpression led to formation of bone metastatic tumors in mice, consistent with results of hematoxylin and eosin staining. In addition, an increase in expression of the macrophage-migration inhibitory factor was observed at the tumor margin in mice inoculated with CD133+ LNCaP cells. These findings suggest a regulatory role of CD133 in stem cell and EMT properties, and the sustained acquisition of osteolytic features in PC. Therefore, our results may facilitate development of a novel classification system and therapeutic strategies for bone metastasis of PC.

9.
JBMR Plus ; 3(7): e10189, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31372592

ABSTRACT

Bone is the most common site of prostate cancer (PC) metastasis. Studies suggest that cancer stem cells (CSCs) are associated with stemness characteristics, providing some support for the concept that CSCs act as osteosclerotic precursors in bone microenvironmental niches. Here, we asked whether ectopic overexpression of CD133 maintains stability of CSCs in human PC cell lines and induces the changes of molecular features in the bone microenvironment. Ectopic overexpression of CD133 in PC3 or DU145 cells led to increased expression of ALDHA1, OCT4, and NANOG, enhanced colony-forming ability, and increased ALDH activity. In addition, micro-CT imaging, confocal microscopy, and H&E staining of mouse tissue confirmed that CD133 overexpression in PC3 and DU145 led to marked osteolytic bone tumor. However, expression of osteoblastic markers such as collagen type I, bone sialoprotein, and osteocalcin (OC) at the tumor margin of CD133-overexpressing PC3 tumors in mouse tibiae was higher than that of CD133-overexpressing DU145 tumors with osteosclerotic molecular features. In addition, expression of osteopontin (OPN) mRNA/protein by CD133-overexpressing PC3 cells was higher than that by DU145 cells. Especially, conditioned medium (CM) from PC3CD133+ cells increased osterix (OSX) activity in bone marrow stromal cells (BMSCs), resulting in increased expression of OC mRNA/protein resulted in increased staining of mineralized matrix by Alizarin red. However, CM from OPN silenced PC3CD133+ cells led to a reduction of OC mRNA and protein expression through OSX activity resulted in reduced amount of mineralized matrix. In conclusion, these findings suggest that CD133 plays a functional role in regulating CSC characteristics in PCs and modulates their abilities in which induce the osteosclerosis of BMSCs. In addition, OPN from CSCs acts as a niche component that promotes osteosclerosis by supporting osteoblastic differentiation of BMSCs.

10.
Lasers Med Sci ; 33(1): 57-66, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28956217

ABSTRACT

Consistent with cancer stem cell theory, a small fraction of cancer cells, described as cancer stem cells (CSCs), may promote tumor recurrence and anti-cancer drug resistance. Therefore, much effort has been devoted to the development of CSC targeted therapy to vanquish drug resistance. In this study, we have investigated the effect of multiple light-emitting diode (LED) irradiation treatments with conventional anti-cancer drugs on CSC-like oral cancer cells that acquired stemness by ectopic over expression of CD133. To evaluate combined LED irradiation anti-cancer drug effects, we investigated the chemosensitizing effect of 635 nm irradiation on 5-fluorouracil (5FU)-treated KBCD133+ and KBVec cells, interrogating the underlying molecular mechanisms associated with stemness and apoptosis that are responsible for chemopreventive activity. In addition, combination therapy with LED irradiation and 5-FU treatment was carried out in KBCD133+ and KBVec cell-inoculated mouse models. LED irradiation of 635 nm inhibited CSC-like properties consistent with a decrease in OCT4 and NANOG protein expression, reducing colony-forming ability. In addition, LED irradiation enhanced 5-FU-induced cytotoxicity and improved 5-FU chemosensitivity in KBCD133+ via enhancement of apoptosis. These findings were validated in vivo, wherein LED irradiation combined with 5-FU treatment inhibited tumor growth in KBCD133+-inoculated mice. Collectively, our results provide novel evidence for 635 nm irradiation-induced 5-FU chemosensitization of CSC in oral cancer. In addition, this research highlights that 635 nm LED irradiation may serve as an adjunct treatment to conventional chemotherapeutic drugs in patients with oral cancer.


Subject(s)
Drug Resistance, Neoplasm/drug effects , Fluorouracil/pharmacology , Lasers , AC133 Antigen/metabolism , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Apoptosis/radiation effects , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Humans , Mice, Nude , Neoplasm Recurrence, Local/pathology , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/radiation effects
11.
Oncotarget ; 8(39): 65770-65777, 2017 Sep 12.
Article in English | MEDLINE | ID: mdl-29029470

ABSTRACT

Tumors of the prostate or breast are particularly likely to metastasize to the bone, and early diagnosis of metastatic bone tumors is important for designing an effective treatment strategy. Imaging modalities for the detection of bone metastasis are limited, and radiation-based techniques are commonly used. Here, we investigated the efficacy of selective near-infrared (NIR) fluorescence detection of metastatic bone tumors and its role in the detection of bone metastasis in prostate and breast cancer cell lines and in a xenograft mouse model. A targeted NIR fluorophore was used to monitor metastatic bone tumors using a NIR fluorescence imaging system in real time, enabling the diagnosis of bone metastasis in vivo by providing the location of the metastatic bone tumor. The NIR fluorescence imaging technique using targeted NIR contrast agents is a potential tool for the early diagnosis of bone tumors.

12.
Tumour Biol ; 39(4): 1010428317695534, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28381190

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers in the world. Resistance to cytotoxic chemotherapy is a major cause of mortality in patients with HNSCC. A small subset of cancer cells called cancer stem cells (CSCs) may be key contributors to drug resistance and tumor recurrence in HNSCC. The aim of this study was to determine whether CD133, which maintains properties of CSCs, promotes chemoresistance by arresting cell cycle transition and reducing apoptosis in HNSCC cells. CD133 overexpression was examined in KB cells, and colony forming and aldehyde dehydrogenase activity assays were performed. To investigate the role of CD133 in chemoresistance, cell death was analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Diff-Quick, flow cytometry, and western blot of apoptosis-related protein expression in fluorouracil (5-FU)- or cisplatin-treated cells. In addition, microarray and related protein expression assessments were performed to investigate the mechanism of chemoresistance against 5-FU and cisplatin in KB cells. Moreover, chemoresistance against 5-FU or cisplatin in a KB-inoculated mouse model was analyzed by hematoxylin and eosin staining, immunohistochemical study of CD133, and immunofluorescence of tumor tissue. In this study, we demonstrate that ectopic overexpression of CD133 significantly promotes properties of stemness in KB cell lines. Furthermore, CD133 promotes chemoresistance by arresting transition of the cell cycle and reducing apoptosis, which results in inhibition of tumor growth in 5-FU- or cisplatin-injected mouse tumor model. Taken together, our findings show that elevated levels of CD133 lead to HNSCC chemoresistance through increased stemness and cell cycle arrest.


Subject(s)
AC133 Antigen/physiology , Carcinoma, Squamous Cell/drug therapy , Head and Neck Neoplasms/drug therapy , AC133 Antigen/genetics , Animals , Apoptosis , Carcinoma, Squamous Cell/pathology , Cell Cycle Checkpoints , Cisplatin/pharmacology , Fluorouracil/pharmacology , Head and Neck Neoplasms/pathology , Humans , KB Cells , Male , Mice , Neoplastic Stem Cells/drug effects , Recombinant Fusion Proteins/biosynthesis , Squamous Cell Carcinoma of Head and Neck
13.
Lasers Med Sci ; 32(1): 189-200, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27807651

ABSTRACT

Photomodulation therapy (PBMT) using light-emitting diode (LED) has been proposed as an alternative to conventional osteoporosis therapies. Our aim was to determine the effect of irradiation with a light-emitting diode on receptor activator of NF-κB ligand (RANKL)-mediated differentiation of mouse bone marrow macrophages into osteoclasts and compare it to alendronate treatment. The cells were irradiated with LED at 635±10 nm, 9-cm spot size, 5 mW/cm2, and 18 J for 60 min/day in a CO2 incubator. The differentiation of irradiated and untreated RANKL-stimulated bone marrow macrophages into osteoclasts was evaluated by tartrate-resistant acid phosphatase (TRAP) staining and by molecular methods. These included assessing messenger RNA (mRNA) expression of osteoclastic markers such as TRAP, c-Fos, Atp6v0d2, DC-STAMP, NFATc1, cathepsin K, MMP9 and OSCAR; phosphorylation of various MAPKs, including extracellular signal-regulated kinase ERK1/2, P38, and JNK; NF-κB translocation; and resorption pit formation. Results were compared to those obtained with sodium alendronate. Production of reactive oxygen species was measured by a 2',7'-dihydrodichlorofluorescein diacetate assay. LED irradiation and alendronate inhibited mRNA expression of osteoclast-related genes, such as TRAP, c-Fos, and NFATc1, and reduced the osteoclast activity of RANKL-stimulated bone marrow macrophages. LED irradiation, but not alendronate, also inhibited the production of reactive oxygen species (ROS); phosphorylation of ERK, P38, and IκB; and NF-κB translocation. These findings suggest that LED irradiation downregulates osteoclastogenesis by ROS production; this effect could lead to reduced bone loss and may offer a new therapeutic tool for managing osteoporosis.


Subject(s)
Alendronate/pharmacology , Light , Osteoclasts/cytology , Osteogenesis/drug effects , Osteogenesis/radiation effects , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Bone Resorption/pathology , Cell Differentiation/drug effects , Down-Regulation/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Macrophages/cytology , Macrophages/drug effects , Male , Mice, Inbred BALB C , NF-kappa B/metabolism , Osteoclasts/drug effects , Osteoclasts/metabolism , Osteoclasts/radiation effects , Phosphorylation/drug effects , RANK Ligand/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Receptor Activator of Nuclear Factor-kappa B/metabolism , Signal Transduction/drug effects
14.
Photomed Laser Surg ; 35(2): 78-86, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27626322

ABSTRACT

OBJECTIVE: This study was designed to investigate the effect of 635-nm irradiation from a light-emitting diode (LED) on osteoclastogenesis in receptor activator of nuclear factor kappa-B (NF-κB) ligand (RANKL)-stimulated mouse bone marrow-derived macrophages (BMMs). We determined whether 635-nm irradiation modulated the RANKL-induced osteoclastic signaling pathway in heat shock protein-27 (HSP27)-silenced cells and analyzed the functional cross talk between these factors in osteoclastic differentiation and activation. BACKGROUND: HSP27, a member of the small HSP family, regulates oxidative stress. Clinical reports suggest that low-level laser therapy or LED therapy (LEDT) could be an effective alternative treatment for osteolytic bone disease. METHODS: In control or HSP27-siRNA-treated BMMs, the effects of LED irradiation with 635 nm and 5 mW/cm2 on RANKL-induced osteoclastic differentiation and activity were assessed by measuring tartrate-resistant acid phosphatase (TRAP) and resorption pit formation. Quantitative real-time polymerase chain reaction and western blot assays were carried out to assess the mRNA expression of osteoclastogenesis-related genes and phosphorylation of c-Jun-N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK1/2), AKT, and p38, respectively. Intracellular reactive oxygen species (ROS) generation was measured using the 2',7'-dichlorodihydrofluorescein diacetate (H2DCF-DA) detection method. RESULTS: The 635-nm irradiation treatment significantly increased HSP27 expression and decreased intracellular ROS generation, as well as p38 and AKT phosphorylation, leading to reductions in the expression of c-fos, NFATc1, and DC-STAMP and TRAP activation and osteoclastic bone resorption in RANKL-induced BMMs. However, in HSP27-silenced BMMs, no change was observed. CONCLUSIONS: Thus, 635-nm irradiation modulates RANKL-induced osteoclastogenesis via HSP27 in BMMs. Thus, HSP27 may play a role in regulating the osteoclastic response to LEDT.


Subject(s)
Gene Expression Regulation , Low-Level Light Therapy , Macrophages/radiation effects , Osteogenesis/radiation effects , RANK Ligand/genetics , Animals , Blotting, Western , Bone Resorption/genetics , Cells, Cultured , Disease Models, Animal , Macrophages/cytology , Male , Mice , Mice, Inbred BALB C , Osteoclasts/pathology , Osteoclasts/radiation effects , RNA, Small Interfering/metabolism , Random Allocation , Real-Time Polymerase Chain Reaction/methods , Sensitivity and Specificity
15.
Lasers Surg Med ; 47(9): 745-55, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26391894

ABSTRACT

BACKGROUND AND OBJECTIVE: Bone homeostasis is maintained by a balance between osteoblastic bone formation and osteoclastic bone resorption, where intracellular reactive oxygen species (ROS) are crucial mediators of osteoclastogenesis. Recently, low-level light therapy (LLLT), a form of laser medicine used in various clinical fields, was shown to alleviate oxidative stress by scavenging intracellular ROS. The present study aimed to investigate the impact of 635 nm irradiation from a light-emitting diode (LED) on osteoclastogenesis from receptor activator of nuclear factor kappa-B (NF-κB) ligand (RANKL)-stimulated mouse bone marrow-derived macrophages (BMMs). STUDY DESIGN/MATERIALS AND METHODS: The effects of LED irradiation on osteoclastogenesis were assessed in tartrate-resistant acid phosphatase (TRAP), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), cell viability, and resorption pit formation, respectively. Quantitative real-time polymerase chain reaction (qPCR) and Western blot analyses were also performed to assess mRNA expression of osteoclastogenesis-related genes and phosphorylation of extracellular signal-regulated kinase 1/2 (ERK 1/2), p38, and c-Jun-N-terminal kinase (JNK). NF-κB activity was assayed by luciferase reporter assay and Intracellular ROS generation was investigated by the 2',7'-dichlorodihydrofluorescein diacetate (H2 DCF-DA) detection method. RESULTS: LED irradiation significantly inhibited RANKL-mediated osteoclast differentiation from BMMs and mRNA expression of TRAP, osteoclast-associated immunoglobulin-like receptor (OSCAR), and dendrocyte-expressed seven-transmembrane protein (DC-STAMP). Exposure to LED light likewise significantly decreased RANKL-facilitated NF-κB activity, p38 and ERK phosphorylation and intracellular ROS generation, and increased gene expression of nuclear factor E2-related factor 2 (Nrf2). CONCLUSIONS: Taken together, the results presented herein show that LED irradiation downregulates osteoclastogenesis by reducing ROS production. Therefore, LED irradiation/LLLT might be useful as an alternative, conservative approach to osteoporosis management.


Subject(s)
Bone Resorption/etiology , Low-Level Light Therapy/instrumentation , Osteoclasts/radiation effects , RANK Ligand/physiology , Animals , Bone Resorption/metabolism , Bone Resorption/pathology , Cell Culture Techniques , Cell Differentiation/radiation effects , Male , Mice , Mice, Inbred BALB C , Osteoclasts/metabolism , Osteoclasts/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...