Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(4): e0267643, 2022.
Article in English | MEDLINE | ID: mdl-35476649

ABSTRACT

BACKGROUND: A high false-negative rate has been reported for the diagnosis of ossification of the posterior longitudinal ligament (OPLL) using plain radiography. We investigated whether deep learning (DL) can improve the diagnostic performance of radiologists for cervical OPLL using plain radiographs. MATERIALS AND METHODS: The training set consisted of 915 radiographs from 207 patients diagnosed with OPLL. For the test set, we used 200 lateral cervical radiographs from 100 patients with cervical OPLL and 100 patients without OPLL. An observer performance study was conducted over two reading sessions. In the first session, we compared the diagnostic performance of the DL-model and the six observers. The diagnostic performance was evaluated using the area under the receiver operating characteristic curve (AUC) at the vertebra and patient level. The sensitivity and specificity of the DL model and average observers were calculated in per-patient analysis. Subgroup analysis was performed according to the morphologic classification of OPLL. In the second session, observers evaluated the radiographs by referring to the results of the DL-model. RESULTS: In the vertebra-level analysis, the DL-model showed an AUC of 0.854, which was higher than the average AUC of observers (0.826), but the difference was not significant (p = 0.292). In the patient-level analysis, the performance of the DL-model had an AUC of 0.851, and the average AUC of observers was 0.841 (p = 0.739). The patient-level sensitivity and specificity were 91% and 69% in the DL model, and 83% and 68% for the average observers, respectively. Both the DL-model and observers showed decreases in overall performance in the segmental and circumscribed types. With knowledge of the results of the DL-model, the average AUC of observers increased to 0.893 (p = 0.001) at the vertebra level and 0.911 (p < 0.001) at the patient level. In the subgroup analysis, the improvement was largest in segmental-type (AUC difference 0.087; p = 0.002). CONCLUSIONS: The DL-based OPLL detection model can significantly improve the diagnostic performance of radiologists on cervical radiographs.


Subject(s)
Deep Learning , Ossification of Posterior Longitudinal Ligament , Cervical Vertebrae/diagnostic imaging , Humans , Longitudinal Ligaments , Ossification of Posterior Longitudinal Ligament/diagnostic imaging , Osteogenesis , Radiography
2.
Eur Radiol ; 30(11): 5785-5793, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32474633

ABSTRACT

OBJECTIVES: To develop a deep learning algorithm for automated detection and localization of intracranial aneurysms on time-of-flight MR angiography and evaluate its diagnostic performance. METHODS: In a retrospective and multicenter study, MR images with aneurysms based on radiological reports were extracted. The examinations were randomly divided into two data sets: training set of 468 examinations and internal test set of 120 examinations. Additionally, 50 examinations without aneurysms were randomly selected and added to the internal test set. External test data set consisted of 56 examinations with intracranial aneurysms and 50 examinations without aneurysms, which were extracted based on radiological reports from a different institution. After manual ground truth segmentation of aneurysms, a deep learning algorithm based on 3D ResNet architecture was established with the training set. Its sensitivity, positive predictive value, and specificity were evaluated in the internal and external test sets. RESULTS: MR images included 551 aneurysms (mean diameter, 4.17 ± 2.49 mm) in the training, 147 aneurysms (mean diameter, 3.98 ± 2.11 mm) in the internal test, 63 aneurysms (mean diameter, 3.23 ± 1.69 mm) in the external test sets. The sensitivity, the positive predictive value, and the specificity were 87.1%, 92.8%, and 92.0% for the internal test set and 85.7%, 91.5%, and 98.0% for the external test set, respectively. CONCLUSION: A deep learning algorithm detected intracranial aneurysms with a high diagnostic performance which was validated using external data set. KEY POINTS: • A deep learning-based algorithm for the automated diagnosis of intracranial aneurysms demonstrated a high sensitivity, positive predictive value, and specificity. • The high diagnostic performance of the algorithm was validated using external test data set from a different institution with a different scanner. • The algorithm might be robust and effective for general use in real clinical settings.


Subject(s)
Algorithms , Deep Learning , Intracranial Aneurysm/diagnosis , Magnetic Resonance Angiography/methods , Female , Humans , Male , Middle Aged , ROC Curve , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...