Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 15870, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34354093

ABSTRACT

Tensile mechanical properties of fully recrystallized TWIP steel specimens having various grain sizes (d) ranging from 0.79 µm to 85.6 µm were investigated. It was confirmed that the UFG specimens having the mean grain sizes of 1.5 µm or smaller abnormally showed discontinuous yielding characterized by a clear yield-drop while the specimens having grain sizes larger than 2.4 µm showed normal continuous yielding. In-situ synchrotron radiation XRD showed dislocation density around yield-drop in the UFG specimen quickly increased. ECCI observations revealed the nucleation of deformation twins and stacking faults from grain boundaries in the UFG specimen around yielding. Although it had been conventionally reported that the grain refinement suppresses deformation twinning in FCC metals and alloys, the number density of deformation twins in the 0.79 µm grain-sized specimen was much higher than that in the specimens with grain sizes of 4.5 µm and 15.4 µm. The unusual change of yielding behavior from continuous to discontinuous manner by grain refinement could be understood on the basis of limited number of free dislocations in each ultrafine grain. The results indicated that the scarcity of free dislocations in the recrystallized UFG specimens changed the deformation and twinning mechanisms in the TWIP steel.

2.
ACS Appl Mater Interfaces ; 13(17): 19983-19991, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33819008

ABSTRACT

Among various energy harvester paradigms, the simple cantilever-structured magneto-mechano-electric (MME) energy generator comprises a piezoelectric material laminated on a magnetostrictive metal plate and permanent magnets as proof mass, exhibiting excellent magnetic energy-harvesting performance. The current challenge in using MME energy harvesters is the mechano-electric coupling at the interface between the piezoelectric material and magnetostrictive metal layer, which depends significantly on the mechanical properties of the interfacial adhesive layer. In this study, the effects of four types of adhesive interfacial layers on the output power and environmental and fatigue resistances of MME harvesters are systematically investigated. An optimized MME energy generator with an adhesive interfacial layer of 18.8 µm thickness and elastic modulus of 3.1 GPa achieves colossal enhancement (∼300%) with a maximum output power density of 0.92 mW/cm2, while a 10 Oe (=10 G = 1 mT in air; 60 Hz) magnetic field is applied. In addition, the generator exhibits a robust endurance of continuous 108 fatigue cycles and excellent temperature stability in the range of -30 to 70 °C. The presented MME generator, which harvests stray magnetic energy reliably, is promising as a low-cost and efficient autonomous power source for Internet of Things devices, wireless sensor networks, and so on.

3.
Sci Rep ; 6: 39127, 2016 12 14.
Article in English | MEDLINE | ID: mdl-27966603

ABSTRACT

Dynamic recrystallization (DRX) is an important grain refinement mechanism to fabricate steels with high strength and high ductility (toughness). The conventional DRX mechanism has reached the limitation of refining grains to several microns even though employing high-strain deformation. Here we show a DRX phenomenon occurring in the dynamically transformed (DT) ferrite, by which the required strain for the operation of DRX and the formation of ultrafine grains is significantly reduced. The DRX of DT ferrite shows an unconventional temperature dependence, which suggests an optimal condition for grain refinement. We further show that new strategies for ultra grain refinement can be evoked by combining DT and DRX mechanisms, based on which fully ultrafine microstructures having a mean grain size down to 0.35 microns can be obtained without high-strain deformation and exhibit superior mechanical properties. This study will open the door to achieving optimal grain refinement to nanoscale in a variety of steels requiring no high-strain deformation in practical industrial application.

SELECTION OF CITATIONS
SEARCH DETAIL
...