Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
JNCI Cancer Spectr ; 8(3)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38730548

ABSTRACT

BACKGROUND: Traditional constraints specify that 700 cc of liver should be spared a hepatotoxic dose when delivering liver-directed radiotherapy to reduce the risk of inducing liver failure. We investigated the role of single-photon emission computed tomography (SPECT) to identify and preferentially avoid functional liver during liver-directed radiation treatment planning in patients with preserved liver function but limited functional liver volume after receiving prior hepatotoxic chemotherapy or surgical resection. METHODS: This phase I trial with a 3 + 3 design evaluated the safety of liver-directed radiotherapy using escalating functional liver radiation dose constraints in patients with liver metastases. Dose-limiting toxicities were assessed 6-8 weeks and 6 months after completing radiotherapy. RESULTS: All 12 patients had colorectal liver metastases and received prior hepatotoxic chemotherapy; 8 patients underwent prior liver resection. Median computed tomography anatomical nontumor liver volume was 1584 cc (range = 764-2699 cc). Median SPECT functional liver volume was 1117 cc (range = 570-1928 cc). Median nontarget computed tomography and SPECT liver volumes below the volumetric dose constraint were 997 cc (range = 544-1576 cc) and 684 cc (range = 429-1244 cc), respectively. The prescription dose was 67.5-75 Gy in 15 fractions or 75-100 Gy in 25 fractions. No dose-limiting toxicities were observed during follow-up. One-year in-field control was 57%. One-year overall survival was 73%. CONCLUSION: Liver-directed radiotherapy can be safely delivered to high doses when incorporating functional SPECT into the radiation treatment planning process, which may enable sparing of lower volumes of liver than traditionally accepted in patients with preserved liver function. TRIAL REGISTRATION: NCT02626312.


Subject(s)
Colorectal Neoplasms , Liver Neoplasms , Liver , Radiotherapy, Image-Guided , Tomography, Emission-Computed, Single-Photon , Humans , Male , Female , Liver Neoplasms/secondary , Liver Neoplasms/radiotherapy , Liver Neoplasms/diagnostic imaging , Middle Aged , Aged , Liver/diagnostic imaging , Liver/radiation effects , Radiotherapy, Image-Guided/methods , Colorectal Neoplasms/radiotherapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/diagnostic imaging , Organ Size , Radiotherapy Dosage , Tomography, X-Ray Computed , Radiotherapy Planning, Computer-Assisted/methods , Adult
2.
Adv Radiat Oncol ; 5(2): 269-278, 2020.
Article in English | MEDLINE | ID: mdl-32280827

ABSTRACT

PURPOSE: Deformable image registration (DIR) of longitudinal liver cancer computed tomographic (CT) images can be challenging owing to anatomic changes caused by radiation therapy (RT) or disease progression. We propose a workflow for the DIR of longitudinal contrast-enhanced CT scans of liver cancer based on a biomechanical model of the liver driven by boundary conditions on the liver surface and centerline of an autosegmentation of the vasculature. METHODS AND MATERIALS: Pre- and post-RT CT scans acquired with a median gap of 112 (32-217) days for 28 patients who underwent RT for intrahepatic cholangiocarcinoma were retrospectively analyzed. For each patient, 5 corresponding anatomic landmarks in pre- and post-RT scans were identified in the liver by a clinical expert for evaluation of the accuracy of different DIR strategies. The first strategy corresponded to the use of a biomechanical model-based DIR method with boundary conditions specified on the liver surface (BM_DIR). The second strategy corresponded to the use of an expansion of BM_DIR consisting of the auto-segmentation of the liver vasculature to determine additional boundary conditions in the biomechanical model (BM_DIR_VBC). The 2 strategies were also compared with an intensity-based DIR strategy using a Demons algorithms. RESULTS: The group mean target registration errors were 12.4 ± 7.5, 7.7 ± 3.7 and 4.4 ± 2.5 mm, for the Demons, BM_DIR and BM_DIR_VBC, respectively. CONCLUSIONS: In regard to the large and complex deformation observed in this study and the achieved accuracy of 4.4 mm, the proposed BM_DIR_VBC method might reveal itself as a valuable tool in future studies on the relationship between delivered dose and treatment outcome.

3.
Med Phys ; 47(1): 64-74, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31449684

ABSTRACT

PURPOSE: Currently, radiologists use tumor-to-normal tissue contrast across multiphase computed tomography (MPCT) for lesion detection. Here, we developed a novel voxel-based enhancement pattern mapping (EPM) technique and investigated its ability to improve contrast-to-noise ratios (CNRs) in a phantom study and in patients with hepatobiliary cancers. METHODS: The EPM algorithm is based on the root mean square deviation between each voxel and a normal liver enhancement model using patient-specific (EPM-PA) or population data (EPM-PO). We created a phantom consisting of liver tissue and tumors with distinct enhancement signals under varying tumor sizes, motion, and noise. We also retrospectively evaluated 89 patients with hepatobiliary cancers who underwent active breath-hold MPCT between 2016 and 2017. MPCT phases were registered using a three-dimensional deformable image registration algorithm. For the patient study, CNRs of tumor to adjacent tissue across MPCT phases, EPM-PA and EPM-PO were measured and compared. RESULTS: EPM resulted in statistically significant CNR improvement (P < 0.05) for tumor sizes down to 3 mm, but the CNR improvement was significantly affected by tumor motion and image noise. Eighty-two of 89 hepatobiliary cases showed CNR improvement with EPM (PA or PO) over grayscale MPCT, by an average factor of 1.4, 1.6, and 1.5 for cholangiocarcinoma, hepatocellular carcinoma, and colorectal liver metastasis, respectively (P < 0.05 for all). CONCLUSIONS: EPM increases CNR compared with grayscale MPCT for primary and secondary hepatobiliary cancers. This new visualization method derived from MPCT datasets may have applications for early cancer detection, radiomic characterization, tumor treatment response, and segmentation. IMPLICATIONS FOR PATIENT CARE: We developed a voxel-wise enhancement pattern mapping (EPM) technique to improve the contrast-to-noise ratio (CNR) of multiphase CT. The improvement in CNR was observed in datasets of patients with cholangiocarcinoma, hepatocellular carcinoma, and colorectal liver metastasis. EPM has the potential to be clinically useful for cancers with regard to early detection, radiomic characterization, response, and segmentation.


Subject(s)
Digestive System Neoplasms/diagnostic imaging , Image Processing, Computer-Assisted/methods , Signal-To-Noise Ratio , Tomography, X-Ray Computed , Algorithms , Humans , Male , Middle Aged , Phantoms, Imaging , Retrospective Studies
4.
Radiother Oncol ; 134: 101-109, 2019 05.
Article in English | MEDLINE | ID: mdl-31005203

ABSTRACT

PURPOSE: To evaluate the effect of setup uncertainties including uncertainties between different breath holds (BH) and inter-fractional anatomical changes under CT-guided BH with intensity-modulated proton therapy (IMPT) in patients with liver cancer. METHODS AND MATERIALS: This retrospective study considered 17 patients with liver tumors who underwent feedback-guided BH (FGBH) IMRT treatment with daily CT-on-rail imaging. Planning CT images were acquired at simulation using FGBH, and FGBH CT-on-rail images were also acquired prior to each treatment. Selective robust IMPT plans were generated using planning CT and re-calculated on each daily CT-on-rail image. Subsequently, the fractional doses were deformed and accumulated onto the planning CT according to the deformable image registration between daily and planning CTs. The doses to the target and organs at risk (OARs) were compared between IMRT, planned IMPT, and accumulated IMPT doses. RESULTS: For IMPT plans, the mean of D98% of CTV for all 17 patients was slightly reduced from the planned dose of 68.90 ±â€¯1.61 Gy to 66.48 ±â€¯1.67 Gy for the accumulated dose. The target coverage could be further improved by adjusting planning techniques. The dose-volume histograms of both planned and accumulated IMPT doses showed better sparing of OARs than that of the IMRT. CONCLUSIONS: IMPT with FGBH and CT-on-rail guidance is a robust treatment approach for liver tumor cases.


Subject(s)
Liver Neoplasms/radiotherapy , Proton Therapy/methods , Radiotherapy, Image-Guided/methods , Radiotherapy, Intensity-Modulated/methods , Tomography, X-Ray Computed/methods , Breath Holding , Female , Humans , Male , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Retrospective Studies
5.
Clin Cancer Res ; 24(23): 5883-5894, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30082477

ABSTRACT

PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) is a heterogeneous disease with variable presentations and natural histories of disease. We hypothesized that different morphologic characteristics of PDAC tumors on diagnostic computed tomography (CT) scans would reflect their underlying biology. EXPERIMENTAL DESIGN: We developed a quantitative method to categorize the PDAC morphology on pretherapy CT scans from multiple datasets of patients with resectable and metastatic disease and correlated these patterns with clinical/pathologic measurements. We modeled macroscopic lesion growth computationally to test the effects of stroma on morphologic patterns, hypothesizing that the balance of proliferation and local migration rates of the cancer cells would determine tumor morphology. RESULTS: In localized and metastatic PDAC, quantifying the change in enhancement on CT scans at the interface between tumor and parenchyma (delta) demonstrated that patients with conspicuous (high-delta) tumors had significantly less stroma, higher likelihood of multiple common pathway mutations, more mesenchymal features, higher likelihood of early distant metastasis, and shorter survival times compared with those with inconspicuous (low-delta) tumors. Pathologic measurements of stromal and mesenchymal features of the tumors supported the mathematical model's underlying theory for PDAC growth. CONCLUSIONS: At baseline diagnosis, a visually striking and quantifiable CT imaging feature reflects the molecular and pathological heterogeneity of PDAC, and may be used to stratify patients into distinct subtypes. Moreover, growth patterns of PDAC may be described using physical principles, enabling new insights into diagnosis and treatment of this deadly disease.


Subject(s)
Adenocarcinoma/diagnostic imaging , Adenocarcinoma/pathology , Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/pathology , Tomography, X-Ray Computed , Adenocarcinoma/genetics , Adenocarcinoma/therapy , Algorithms , Biopsy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/therapy , Cell Line, Tumor , Combined Modality Therapy , DNA Mutational Analysis , Humans , Image Processing, Computer-Assisted , Immunohistochemistry , Models, Theoretical , Neoplasm Grading , Neoplasm Metastasis , Neoplasm Staging , Tumor Burden , Exome Sequencing
6.
Abdom Radiol (NY) ; 43(2): 393-403, 2018 02.
Article in English | MEDLINE | ID: mdl-29110053

ABSTRACT

Advances in technology have enabled the delivery of high doses of radiation therapy for pancreatic ductal adenocarcinoma (PDAC) with low rates of toxicity. Although the role of radiation for pancreatic cancer continues to evolve, encouraging results with newer techniques indicate that radiation may benefit selected patient populations. Imaging has been central to the modern successes of radiation therapy for PDAC. Here, we review the role of diagnostic imaging, imaging-based planning, and image guidance in radiation oncology practice for PDAC.


Subject(s)
Adenocarcinoma/diagnostic imaging , Adenocarcinoma/radiotherapy , Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/radiotherapy , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/radiotherapy , Radiation Oncology/methods , Adenocarcinoma/pathology , Carcinoma, Pancreatic Ductal/pathology , Humans , Neoplasm Staging , Pancreatic Neoplasms/pathology , Radiosurgery , Radiotherapy Planning, Computer-Assisted
7.
Int J Part Ther ; 3(3): 414-420, 2017.
Article in English | MEDLINE | ID: mdl-31772991

ABSTRACT

PURPOSE: Proton therapy is increasingly used to treat pediatric brain tumors. However, the response of both tumors and healthy tissues to proton therapy is currently under investigation. One way of assessing this response is magnetic resonance (MR) diffusion tensor imaging (DTI), which can measure molecular mobility at the cellular level, quantified by the apparent diffusion coefficient (ADC). In addition, DTI may reveal axonal fiber directional information in white matter, quantified by fractional anisotropy (FA). Here we report use of DTI to assess tumor and unexposed healthy brain tissue responses in a child who received proton therapy for juvenile pilocytic astrocytoma. MATERIALS AND METHODS: A 10-year-old boy with recurrent juvenile pilocytic astrocytoma of the left thalamus received proton therapy to a dose of 50.4Gy (RBE) in 28 fractions. Functional magnetic resonance imaging was used to select beam angles for treatment planning. Over the course of the 7-year follow-up period, magnetic resonance imaging including DTI was done to assess response. The MR images were registered to the treatment-planning computed tomography scan, and the gross tumor volume (GTV) was mapped onto the MR images at each follow-up. The GTV contour was then mirrored to the right side of brain through the midline to represent unexposed healthy brain tissue. RESULTS: Proton therapy delivered the full prescribed dose to the target while completely sparing the contralateral brain. The MR ADC images obtained before and after proton therapy showed that enhancement corresponding to the GTV had nearly disappeared by 25 months. The ADC and FA measurements confirmed that contralateral healthy brain tissue was not affected, and the GTV reverted to clinically normal ADC and FA values. CONCLUSION: Use of DTI allowed quantitative evaluation of tumor and healthy brain tissue responses to proton therapy.

8.
J Appl Clin Med Phys ; 17(2): 368-378, 2016 03 08.
Article in English | MEDLINE | ID: mdl-27074459

ABSTRACT

Respiratory motion is traditionally assessed using tumor motion magnitude. In proton therapy, respiratory motion causes density variations along the beam path that result in uncertainties of proton range. This work has investigated the use of water-equivalent thickness (WET) to quantitatively assess the effects of respiratory motion on calculated dose in passively scattered proton therapy (PSPT). A cohort of 29 locally advanced non-small cell lung cancer patients treated with 87 PSPT treatment fields were selected for analysis. The variation in WET (ΔWET) along each field was calculated between exhale and inhale phases of the simulation four-dimensional computed tomography. The change in calculated dose (ΔDose) between full-inhale and full-exhale phase was quantified for each field using dose differences, 3D gamma analysis, and differential area under the curve (ΔAUC) analysis. Pearson correlation coefficients were calculated between ΔDose and ΔWET. Three PSPT plans were redesigned using field angles to minimize variations in ΔWET and compared to the original plans. The median ΔWET over 87 treatment fields ranged from 1-9 mm, while the ΔWET 95th percentile value ranged up to 42 mm. The ΔWET was significantly correlated (p < 0.001) to the ΔDose for all metrics analyzed. The patient plans that were redesigned using ΔWET analysis to select field angles were more robust to the effects of respiratory motion, as ΔAUC values were reduced by more than 60% in all three cases. The tumor motion magnitude alone does not capture the potential dosimetric error due to respiratory motion because the proton range is sensitive to the motion of all patient anatomy. The use of ΔWET has been demonstrated to identify situations where respiratory motion can impact the calculated dose. Angular analysis of ΔWET may be capable of designing radiotherapy plans that are more robust to the effects of respiratory motion.


Subject(s)
Biomarkers/analysis , Carcinoma, Non-Small-Cell Lung/radiotherapy , Lung Neoplasms/radiotherapy , Movement , Proton Therapy/instrumentation , Respiration , Water , Four-Dimensional Computed Tomography/methods , Humans , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated
9.
Med Phys ; 43(3): 1111-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26936698

ABSTRACT

PURPOSE: To develop methods for evaluation and mitigation of dosimetric impact due to respiratory and diaphragmatic motion during free breathing in treatment of distal esophageal cancers using intensity-modulated proton therapy (IMPT). METHODS: This was a retrospective study on 11 patients with distal esophageal cancer. For each patient, four-dimensional computed tomography (4D CT) data were acquired, and a nominal dose was calculated on the average phase of the 4D CT. The changes of water equivalent thickness (ΔWET) to cover the treatment volume from the peak of inspiration to the valley of expiration were calculated for a full range of beam angle rotation. Two IMPT plans were calculated: one at beam angles corresponding to small ΔWET and one at beam angles corresponding to large ΔWET. Four patients were selected for the calculation of 4D-robustness-optimized IMPT plans due to large motion-induced dose errors generated in conventional IMPT. To quantitatively evaluate motion-induced dose deviation, the authors calculated the lowest dose received by 95% (D95) of the internal clinical target volume for the nominal dose, the D95 calculated on the maximum inhale and exhale phases of 4D CT DCT0 andDCT50 , the 4D composite dose, and the 4D dynamic dose for a single fraction. RESULTS: The dose deviation increased with the average ΔWET of the implemented beams, ΔWETave. When ΔWETave was less than 5 mm, the dose error was less than 1 cobalt gray equivalent based on DCT0 and DCT50 . The dose deviation determined on the basis of DCT0 and DCT50 was proportionally larger than that determined on the basis of the 4D composite dose. The 4D-robustness-optimized IMPT plans notably reduced the overall dose deviation of multiple fractions and the dose deviation caused by the interplay effect in a single fraction. CONCLUSIONS: In IMPT for distal esophageal cancer, ΔWET analysis can be used to select the beam angles that are least affected by respiratory and diaphragmatic motion. To further reduce dose deviation, the 4D-robustness optimization can be implemented for IMPT planning. Calculation of DCT0 and DCT50 is a conservative method to estimate the motion-induced dose errors.


Subject(s)
Esophageal Neoplasms/radiotherapy , Movement , Radiotherapy, Intensity-Modulated/methods , Dose Fractionation, Radiation , Esophageal Neoplasms/physiopathology , Humans , Radiotherapy Planning, Computer-Assisted , Retrospective Studies
10.
Int J Radiat Oncol Biol Phys ; 91(4): 849-56, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25752400

ABSTRACT

PURPOSE: Computed tomography (CT) artifacts can severely degrade dose calculation accuracy in proton therapy. Prompted by the recently increased popularity of magnetic resonance imaging (MRI) in the radiation therapy clinic, we developed an MRI-based CT artifact correction method for improving the accuracy of proton range calculations. METHODS AND MATERIALS: The proposed method replaces corrupted CT data by mapping CT Hounsfield units (HU number) from a nearby artifact-free slice, using a coregistered MRI. MRI and CT volumetric images were registered with use of 3-dimensional (3D) deformable image registration (DIR). The registration was fine-tuned on a slice-by-slice basis by using 2D DIR. Based on the intensity of paired MRI pixel values and HU from an artifact-free slice, we performed a comprehensive analysis to predict the correct HU for the corrupted region. For a proof-of-concept validation, metal artifacts were simulated on a reference data set. Proton range was calculated using reference, artifactual, and corrected images to quantify the reduction in proton range error. The correction method was applied to 4 unique clinical cases. RESULTS: The correction method resulted in substantial artifact reduction, both quantitatively and qualitatively. On respective simulated brain and head and neck CT images, the mean error was reduced from 495 and 370 HU to 108 and 92 HU after correction. Correspondingly, the absolute mean proton range errors of 2.4 cm and 1.7 cm were reduced to less than 2 mm in both cases. CONCLUSIONS: Our MRI-based CT artifact correction method can improve CT image quality and proton range calculation accuracy for patients with severe CT artifacts.


Subject(s)
Artifacts , Brain , Magnetic Resonance Imaging/methods , Metals , Protons , Radiographic Image Enhancement/methods , Radiotherapy Planning, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Brain/diagnostic imaging , Brain/pathology , Dental Restoration, Permanent , Humans , Phantoms, Imaging , Surgical Instruments
11.
Pract Radiat Oncol ; 5(2): e77-86, 2015.
Article in English | MEDLINE | ID: mdl-25413400

ABSTRACT

PURPOSE: We compared conventionally optimized intensity modulated proton therapy (IMPT) treatment plans against worst-case scenario optimized treatment plans for lung cancer. The comparison of the 2 IMPT optimization strategies focused on the resulting plans' ability to retain dose objectives under the influence of patient setup, inherent proton range uncertainty, and dose perturbation caused by respiratory motion. METHODS AND MATERIALS: For each of the 9 lung cancer cases, 2 treatment plans were created that accounted for treatment uncertainties in 2 different ways. The first used the conventional method: delivery of prescribed dose to the planning target volume that is geometrically expanded from the internal target volume (ITV). The second used a worst-case scenario optimization scheme that addressed setup and range uncertainties through beamlet optimization. The plan optimality and plan robustness were calculated and compared. Furthermore, the effects on dose distributions of changes in patient anatomy attributable to respiratory motion were investigated for both strategies by comparing the corresponding plan evaluation metrics at the end-inspiration and end-expiration phase and absolute differences between these phases. The mean plan evaluation metrics of the 2 groups were compared with 2-sided paired Student t tests. RESULTS: Without respiratory motion considered, we affirmed that worst-case scenario optimization is superior to planning target volume-based conventional optimization in terms of plan robustness and optimality. With respiratory motion considered, worst-case scenario optimization still achieved more robust dose distributions to respiratory motion for targets and comparable or even better plan optimality (D95% ITV, 96.6% vs 96.1% [P = .26]; D5%- D95% ITV, 10.0% vs 12.3% [P = .082]; D1% spinal cord, 31.8% vs 36.5% [P = .035]). CONCLUSIONS: Worst-case scenario optimization led to superior solutions for lung IMPT. Despite the fact that worst-case scenario optimization did not explicitly account for respiratory motion, it produced motion-resistant treatment plans. However, further research is needed to incorporate respiratory motion into IMPT robust optimization.


Subject(s)
Lung Neoplasms/physiopathology , Lung Neoplasms/radiotherapy , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Respiratory Mechanics/physiology , Humans , Radiotherapy Dosage , Retrospective Studies
12.
Int J Radiat Oncol Biol Phys ; 87(3): 576-82, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24074932

ABSTRACT

PURPOSE: To quantify and compare the effects of respiratory motion on paired passively scattered proton therapy (PSPT) and intensity modulated photon therapy (IMRT) plans; and to establish the relationship between the magnitude of tumor motion and the respiratory-induced dose difference for both modalities. METHODS AND MATERIALS: In a randomized clinical trial comparing PSPT and IMRT, radiation therapy plans have been designed according to common planning protocols. Four-dimensional (4D) dose was computed for PSPT and IMRT plans for a patient cohort with respiratory motion ranging from 3 to 17 mm. Image registration and dose accumulation were performed using grayscale-based deformable image registration algorithms. The dose-volume histogram (DVH) differences (4D-3D [3D = 3-dimensional]) were compared for PSPT and IMRT. Changes in 4D-3D dose were correlated to the magnitude of tumor respiratory motion. RESULTS: The average 4D-3D dose to 95% of the internal target volume was close to zero, with 19 of 20 patients within 1% of prescribed dose for both modalities. The mean 4D-3D between the 2 modalities was not statistically significant (P<.05) for all dose-volume histogram indices (mean ± SD) except the lung V5 (PSPT: +1.1% ± 0.9%; IMRT: +0.4% ± 1.2%) and maximum cord dose (PSPT: +1.5 ± 2.9 Gy; IMRT: 0.0 ± 0.2 Gy). Changes in 4D-3D dose were correlated to tumor motion for only 2 indices: dose to 95% planning target volume, and heterogeneity index. CONCLUSIONS: With our current margin formalisms, target coverage was maintained in the presence of respiratory motion up to 17 mm for both PSPT and IMRT. Only 2 of 11 4D-3D indices (lung V5 and spinal cord maximum) were statistically distinguishable between PSPT and IMRT, contrary to the notion that proton therapy will be more susceptible to respiratory motion. Because of the lack of strong correlations with 4D-3D dose differences in PSPT and IMRT, the extent of tumor motion was not an adequate predictor of potential dosimetric error caused by breathing motion.


Subject(s)
Carcinoma, Non-Small-Cell Lung/radiotherapy , Lung Neoplasms/radiotherapy , Movement , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Respiration , Adult , Aged , Aged, 80 and over , Algorithms , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/pathology , Four-Dimensional Computed Tomography , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Middle Aged , Photons/therapeutic use , Radiotherapy Dosage , Tumor Burden , Young Adult
13.
Med Phys ; 40(5): 051711, 2013 May.
Article in English | MEDLINE | ID: mdl-23635259

ABSTRACT

PURPOSE: Intensity-modulated proton therapy (IMPT) is highly sensitive to uncertainties in beam range and patient setup. Conventionally, these uncertainties are dealt using geometrically expanded planning target volume (PTV). In this paper, the authors evaluated a robust optimization method that deals with the uncertainties directly during the spot weight optimization to ensure clinical target volume (CTV) coverage without using PTV. The authors compared the two methods for a population of head and neck (H&N) cancer patients. METHODS: Two sets of IMPT plans were generated for 14 H&N cases, one being PTV-based conventionally optimized and the other CTV-based robustly optimized. For the PTV-based conventionally optimized plans, the uncertainties are accounted for by expanding CTV to PTV via margins and delivering the prescribed dose to PTV. For the CTV-based robustly optimized plans, spot weight optimization was guided to reduce the discrepancy in doses under extreme setup and range uncertainties directly, while delivering the prescribed dose to CTV rather than PTV. For each of these plans, the authors calculated dose distributions under various uncertainty settings. The root-mean-square dose (RMSD) for each voxel was computed and the area under the RMSD-volume histogram curves (AUC) was used to relatively compare plan robustness. Data derived from the dose volume histogram in the worst-case and nominal doses were used to evaluate the plan optimality. Then the plan evaluation metrics were averaged over the 14 cases and were compared with two-sided paired t tests. RESULTS: CTV-based robust optimization led to more robust (i.e., smaller AUCs) plans for both targets and organs. Under the worst-case scenario and the nominal scenario, CTV-based robustly optimized plans showed better target coverage (i.e., greater D95%), improved dose homogeneity (i.e., smaller D5% - D95%), and lower or equivalent dose to organs at risk. CONCLUSIONS: CTV-based robust optimization provided significantly more robust dose distributions to targets and organs than PTV-based conventional optimization in H&N using IMPT. Eliminating the use of PTV and planning directly based on CTV provided better or equivalent normal tissue sparing.


Subject(s)
Head and Neck Neoplasms/radiotherapy , Proton Therapy/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Algorithms , Humans , Radiotherapy Dosage , Retrospective Studies
14.
Med Phys ; 40(5): 051714, 2013 May.
Article in English | MEDLINE | ID: mdl-23635262

ABSTRACT

PURPOSE: Proton dose distributions can potentially be altered by anatomical changes in the beam path despite perfect target alignment using traditional image guidance methods. In this simulation study, the authors explored the use of dosimetric factors instead of only anatomy to set up patients for proton therapy using in-room volumetric computed tomographic (CT) images. METHODS: To simulate patient anatomy in a free-breathing treatment condition, weekly time-averaged four-dimensional CT data near the end of treatment for 15 lung cancer patients were used in this study for a dose-based isocenter shift method to correct dosimetric deviations without replanning. The isocenter shift was obtained using the traditional anatomy-based image guidance method as the starting position. Subsequent isocenter shifts were established based on dosimetric criteria using a fast dose approximation method. For each isocenter shift, doses were calculated every 2 mm up to ± 8 mm in each direction. The optimal dose alignment was obtained by imposing a target coverage constraint that at least 99% of the target would receive at least 95% of the prescribed dose and by minimizing the mean dose to the ipsilateral lung. RESULTS: The authors found that 7 of 15 plans did not meet the target coverage constraint when using only the anatomy-based alignment. After the authors applied dose-based alignment, all met the target coverage constraint. For all but one case in which the target dose was met using both anatomy-based and dose-based alignment, the latter method was able to improve normal tissue sparing. CONCLUSIONS: The authors demonstrated that a dose-based adjustment to the isocenter can improve target coverage and/or reduce dose to nearby normal tissue.


Subject(s)
Proton Therapy/methods , Radiation Dosage , Radiotherapy, Image-Guided/methods , Tomography, X-Ray Computed , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Radiotherapy Dosage
15.
Int J Radiat Oncol Biol Phys ; 86(5): 1007-13, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23688812

ABSTRACT

PURPOSE: To evaluate a method for quantifying the effect of setup errors and range uncertainties on dose distribution and dose-volume histogram using statistical parameters; and to assess existing planning practice in selected treatment sites under setup and range uncertainties. METHODS AND MATERIALS: Twenty passively scattered proton lung cancer plans, 10 prostate, and 1 brain cancer scanning-beam proton plan(s) were analyzed. To account for the dose under uncertainties, we performed a comprehensive simulation in which the dose was recalculated 600 times per given plan under the influence of random and systematic setup errors and proton range errors. On the basis of simulation results, we determined the probability of dose variations and calculated the expected values and standard deviations of dose-volume histograms. The uncertainties in dose were spatially visualized on the planning CT as a probability map of failure to target coverage or overdose of critical structures. RESULTS: The expected value of target coverage under the uncertainties was consistently lower than that of the nominal value determined from the clinical target volume coverage without setup error or range uncertainty, with a mean difference of -1.1% (-0.9% for breath-hold), -0.3%, and -2.2% for lung, prostate, and a brain cases, respectively. The organs with most sensitive dose under uncertainties were esophagus and spinal cord for lung, rectum for prostate, and brain stem for brain cancer. CONCLUSIONS: A clinically feasible robustness plan analysis tool based on direct dose calculation and statistical simulation has been developed. Both the expectation value and standard deviation are useful to evaluate the impact of uncertainties. The existing proton beam planning method used in this institution seems to be adequate in terms of target coverage. However, structures that are small in volume or located near the target area showed greater sensitivity to uncertainties.


Subject(s)
Brain Neoplasms/radiotherapy , Carcinoma, Non-Small-Cell Lung/radiotherapy , Lung Neoplasms/radiotherapy , Prostatic Neoplasms/radiotherapy , Proton Therapy/statistics & numerical data , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Setup Errors/statistics & numerical data , Uncertainty , Brain Neoplasms/diagnostic imaging , Brain Stem/diagnostic imaging , Brain Stem/radiation effects , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Esophagus/diagnostic imaging , Esophagus/radiation effects , Feasibility Studies , Humans , Lung Neoplasms/diagnostic imaging , Male , Organs at Risk/diagnostic imaging , Organs at Risk/radiation effects , Prostatic Neoplasms/diagnostic imaging , Proton Therapy/methods , Radiation Tolerance , Radiography , Radiotherapy Dosage , Rectum/diagnostic imaging , Rectum/radiation effects , Retrospective Studies , Spinal Cord/diagnostic imaging , Spinal Cord/radiation effects
16.
Phys Med Biol ; 57(13): 4095-115, 2012 Jul 07.
Article in English | MEDLINE | ID: mdl-22678123

ABSTRACT

The purpose of this study was to analyze factors affecting proton stopping-power-ratio (SPR) estimations and range uncertainties in proton therapy planning using the standard stoichiometric calibration. The SPR uncertainties were grouped into five categories according to their origins and then estimated based on previously published reports or measurements. For the first time, the impact of tissue composition variations on SPR estimation was assessed and the uncertainty estimates of each category were determined for low-density (lung), soft, and high-density (bone) tissues. A composite, 95th percentile water-equivalent-thickness uncertainty was calculated from multiple beam directions in 15 patients with various types of cancer undergoing proton therapy. The SPR uncertainties (1σ) were quite different (ranging from 1.6% to 5.0%) in different tissue groups, although the final combined uncertainty (95th percentile) for different treatment sites was fairly consistent at 3.0-3.4%, primarily because soft tissue is the dominant tissue type in the human body. The dominant contributing factor for uncertainties in soft tissues was the degeneracy of Hounsfield numbers in the presence of tissue composition variations. To reduce the overall uncertainties in SPR estimation, the use of dual-energy computed tomography is suggested. The values recommended in this study based on typical treatment sites and a small group of patients roughly agree with the commonly referenced value (3.5%) used for margin design. By using tissue-specific range uncertainties, one could estimate the beam-specific range margin by accounting for different types and amounts of tissues along a beam, which may allow for customization of range uncertainty for each beam direction.


Subject(s)
Proton Therapy , Radiotherapy Planning, Computer-Assisted/methods , Uncertainty , Calibration , Humans , Male , Neoplasms/diagnostic imaging , Neoplasms/radiotherapy , Phantoms, Imaging , Tomography, X-Ray Computed
17.
Phys Med Biol ; 57(11): 3555-69, 2012 Jun 07.
Article in English | MEDLINE | ID: mdl-22588165

ABSTRACT

For robust plan optimization and evaluation purposes, one needs a computationally efficient way to calculate dose distributions and dose-volume histograms (DVHs) under various changes in the variables associated with beam delivery and images. In this study, we report an approximate method for rapid calculation of dose when setup errors and anatomical changes occur during proton therapy. This fast dose approximation method calculates new dose distributions under various circumstances based on the prior knowledge of dose distribution from a reference setting. In order to validate the method, we calculated and compared the dose distributions from our approximation method to the dose distributions calculated from a clinically commissioned treatment planning system which was used as the ground truth. The overall accuracy of the proposed method was tested against varying degrees of setup error and anatomical deformation for selected patient cases. The setup error was simulated by rigid shifts of the patient; while the anatomical deformation was introduced using weekly acquired repeat CT data sets. We evaluated the agreement between the dose approximation method and full dose recalculation using a 3D gamma index and the root-mean-square (RMS) and maximum deviation of the cumulative dose volume histograms (cDVHs). The average passing rate of 3D gamma analysis under 3% dose and 3 mm distance-to-agreement criteria were 96% and 89% for setup errors and severe anatomy changes, respectively. The average of RMS and maximum deviation of the cDVHs under the setup error was 0.5% and 1.5%, respectively for all structures considered. Similarly, the average of RMS and maximum deviations under the weekly anatomical change were 0.6% and 2.7%, respectively. Our results show that the fast dose approximation method was able to account for the density variation of the patient due to the setup and anatomical changes with acceptable accuracy while significantly improving the computation time.


Subject(s)
Proton Therapy , Radiation Dosage , Radiotherapy Planning, Computer-Assisted/methods , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Humans , Imaging, Three-Dimensional , Male , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Radiotherapy Dosage , Reproducibility of Results , Time Factors , Tomography, X-Ray Computed
18.
Int J Radiat Oncol Biol Phys ; 82(2): e329-36, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-21703781

ABSTRACT

PURPOSE: To report a method for explicitly designing a planning target volume (PTV) for treatment planning and evaluation in heterogeneous media for passively scattered proton therapy and scanning beam proton therapy using single-field optimization (SFO). METHODS AND MATERIALS: A beam-specific PTV (bsPTV) for proton beams was derived by ray-tracing and shifting ray lines to account for tissue misalignment in the presence of setup error or organ motion. Range uncertainties resulting from inaccuracies in computed tomography-based range estimation were calculated for proximal and distal surfaces of the target in the beam direction. The bsPTV was then constructed based on local heterogeneity. The bsPTV thus can be used directly as a planning target as if it were in photon therapy. To test the robustness of the bsPTV, we generated a single-field proton plan in a virtual phantom. Intentional setup and range errors were introduced. Dose coverage to the clinical target volume (CTV) under various simulation conditions was compared between plans designed based on the bsPTV and a conventional PTV. RESULTS: The simulated treatment using the bsPTV design performed significantly better than the plan using the conventional PTV in maintaining dose coverage to the CTV. With conventional PTV plans, the minimum coverage to the CTV dropped from 99% to 67% in the presence of setup error, internal motion, and range uncertainty. However, plans using the bsPTV showed minimal drop of target coverage from 99% to 94%. CONCLUSIONS: The conventional geometry-based PTV concept used in photon therapy does not work well for proton therapy. We investigated and validated a beam-specific PTV method for designing and evaluating proton plans.


Subject(s)
Movement , Proton Therapy , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Setup Errors , Tumor Burden , Uncertainty , Algorithms , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...