Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 149
Filter
1.
Genes (Basel) ; 15(5)2024 05 03.
Article in English | MEDLINE | ID: mdl-38790212

ABSTRACT

Leaf rust caused by the pathogen Puccinia triticina (Pt) is a destructive fungal disease of wheat that occurs in almost all wheat-growing areas across the globe. Genetic resistance has proven to be the best solution to mitigate the disease. Wheat breeders are continuously seeking new diversified and durable sources of resistance to use in developing new varieties. We developed recombinant inbred line (RIL) populations from two leaf rust-resistant genotypes (Kenya Kudu and AUS12568) introduced from Kenya to identify and characterize resistance to Pt and to develop markers linked closely to the resistance that was found. Our studies detected four QTL conferring adult plant resistance (APR) to leaf rust. Two of these loci are associated with known genes, Lr46 and Lr68, residing on chromosomes 1B and 7B, respectively. The remaining two, QLrKK_2B and QLrAus12568_5A, contributed by Kenya Kudu and AUS12568 respectively, are putatively new loci for Pt resistance. Both QLrKK_2B and QLrAus12568_5A were found to interact additively with Lr46 in significantly reducing the disease severity at adult plant growth stages in the field. We further developed a suite of six closely linked markers within the QLrAus12568_5A locus and four within the QLrKK_2B region. Among these, markers sunKASP_522 and sunKASP_524, flanking QLrAus12568_5A, and sunKASP_536, distal to QLrKK_2B, were identified as the most closely linked and reliable for marker-assisted selection. The markers were validated on a selection of 64 Australian wheat varieties and found to be polymorphic and robust, allowing for clear allelic discrimination. The identified new loci and linked molecular markers will enable rapid adoption by breeders in developing wheat varieties carrying diversified and durable resistance to leaf rust.


Subject(s)
Disease Resistance , Plant Diseases , Puccinia , Quantitative Trait Loci , Triticum , Triticum/genetics , Triticum/microbiology , Triticum/growth & development , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Puccinia/pathogenicity , Kenya , Genetic Markers , Chromosome Mapping , Basidiomycota/pathogenicity , Genotype , Chromosomes, Plant/genetics
2.
JACC Cardiovasc Imaging ; 17(2): 128-145, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37410010

ABSTRACT

BACKGROUND: Cardiac magnetic resonance (CMR) differentiates cardiac metastasis (CMET) and cardiac thrombus (CTHR) based on tissue characteristics stemming from vascularity on late gadolinium enhancement (LGE). Perfusion CMR can assess magnitude of vascularity; utility for cardiac masses (CMASS) is unknown. OBJECTIVES: This study sought to determine if perfusion CMR provides diagnostic and prognostic utility for CMASS beyond binary differentiation of CMET and CTHR. METHODS: The population comprised adult cancer patients with CMASS on CMR; CMET and CTHR were defined using LGE-CMR: CMASS+ patients were matched to CMASS- control subjects for cancer type/stage. First-pass perfusion CMR was interpreted visually and semiquantitatively for CMASS vascularity, including contrast enhancement ratio (CER) (plateau vs baseline) and contrast uptake rate (CUR) (slope). Follow-up was performed for all-cause mortality. RESULTS: A total of 462 cancer patients were studied, including patients with (CMET = 173, CTHR = 69) and without CMASS on LGE-CMR. On perfusion CMR, CER and CUR were higher within CMET vs CTHR (P < 0.001); CUR yielded better performance (AUC: 0.89-0.93) than CER (AUC: 0.66-0.72) (both P < 0.001) to differentiate LGE-CMR-evidenced CMET and CTHR, although both CUR (P = 0.10) and CER (P = 0.01) typically misclassified CMET with minimal enhancement. During follow-up, mortality among CMET patients was high but variable; 47% of patients were alive 1 year post-CMR. Patients with semiquantitative perfusion CMR-evidenced CMET had higher mortality than control subjects (HR: 1.42 [95% CI: 1.06-1.90]; P = 0.02), paralleling visual perfusion CMR (HR: 1.47 [95% CI: 1.12-1.94]; P = 0.006) and LGE-CMR (HR: 1.52 [95% CI: 1.16-2.00]; P = 0.003). Among patients with CMET on LGE-CMR, mortality was highest among patients (P = 0.002) with lesions in the bottom perfusion (CER) tertile, corresponding to low vascularity. Among CMET and cancer-matched control subjects, mortality was equivalent (P = NS) among patients with lesions in the upper CER tertile (corresponding to higher lesion vascularity). Conversely, patients with CMET in the middle (P = 0.03) and lowest (lowest vascularity) (P = 0.001) CER tertiles had increased mortality. CONCLUSIONS: Perfusion CMR yields prognostic utility that complements LGE-CMR: Among cancer patients with LGE-CMR defined CMET, mortality increases in proportion to magnitude of lesion hypoperfusion.


Subject(s)
Contrast Media , Heart Neoplasms , Humans , Adult , Prognosis , Predictive Value of Tests , Gadolinium , Heart Neoplasms/diagnostic imaging , Magnetic Resonance Spectroscopy , Perfusion , Risk Assessment , Magnetic Resonance Imaging, Cine
3.
Plant Dis ; 108(1): 20-29, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37580885

ABSTRACT

Stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), is an important disease of wheat in South Africa (SA) and is primarily controlled using resistant cultivars. Understanding virulence diversity of Pgt is essential for successful breeding of resistant cultivars. Samples of infected wheat stems were collected across the major wheat-growing regions of SA from 2016 to 2020 to determine the pathogenic variability of Pgt isolates. Seven races were identified from 517 isolates pathotyped. The most frequently found races were 2SA104 (BPGSC + Sr9h,27,Kw) (35% frequency) and 2SA88 (TTKSF + Sr8b) (33%). Race 2SA42 (PTKSK + Sr8b), which was found in 2017, and 2SA5 (BFGSF + Sr9h), identified in 2017, are new races. The Ug99 variant race 2SA42 is similar in its virulence to 2SA107 (PTKST + Sr8b) except for avirulence to Sr24 and virulence to Sr8155B1. Race 2SA5 is closely related in its virulence to existing races that commonly infect triticale. Certain races showed limited geographical distribution. Races 2SA5, 2SA105, and 2SA108 were found only in the Western Cape, whereas 2SA107 and 2SA42 were detected only in the Free State province. The new and existing races were compared using microsatellite (SSR) marker analysis and their virulence on commercial cultivars was also determined. Seedling response of 113 wheat entries against the new races, using 2SA88, 2SA88+9h, 2SA106, and 2SA107 as controls, revealed 2SA107 as the most virulent (67 entries susceptible), followed by 2SA42 (64), 2SA106 (60), 2SA88+9h (59), 2SA88 (25), and 2SA5 (17). Thus, 2SA5 may not pose a significant threat to local wheat production. SSR genotyping revealed that 2SA5 is genetically distinct from all other SA Pgt races.


Subject(s)
Basidiomycota , Plant Diseases , Puccinia , South Africa , Disease Resistance/genetics , Plant Breeding , Basidiomycota/physiology
4.
Risk Anal ; 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37876044

ABSTRACT

Diesel exhaust in the latter half of the 20th century has been found to be a lung carcinogen. Conventional diesel emissions continue in the transportation, mining, construction, and farming industries. From the Diesel Exhaust in Miners Study, a public-use dataset was used to calculate the excess lifetime risk of lung cancer associated with diesel exposure (1947-1997). Excess rates of lung cancer mortality associated with respirable elemental carbon (REC) and possible other mining exposures (e.g., oil mists, explosives emissions) were investigated using Poisson regression methods. Lung cancer mortality declined with increasing employment duration while increasing with cumulative REC and non-diesel exposures, suggesting a strong worker survivor effect. Attenuation of the REC effect was observed with increasing cumulative exposure. After adjustment for employment duration, the excess rate ratio for lung cancer mortality was 0.67 (95% CI = 0.35-0.99) for a 10-year lagged exposure to 200 µg/m3 REC, a typical below-ground exposure in the study mines. At exposures of 200, 10, and 1 µg/m3 REC, the estimated excess lifetime risks, respectively, were 119, 43, and 8.7 per thousand. Analysis of an inception cohort hired after dieselization commenced produced smaller and less certain estimates of lifetime risk. From exposures to conventional diesel engine exhaust common in occupational groups in the past, the excess lifetime risk of lung cancer was more than 5%. Ambient REC exposures in the general population were estimated to confer lifetime risks of 0.14 to 14 per thousand, depending on assumptions made.

5.
Nat Commun ; 14(1): 5468, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37673864

ABSTRACT

Leaf rust, caused by Puccinia hordei, is one of the most widespread and damaging foliar diseases affecting barley. The barley leaf rust resistance locus Rph7 has been shown to have unusually high sequence and haplotype divergence. In this study, we isolate the Rph7 gene using a fine mapping and RNA-Seq approach that is confirmed by mutational analysis and transgenic complementation. Rph7 is a pathogen-induced, non-canonical resistance gene encoding a protein that is distinct from other known plant disease resistance proteins in the Triticeae. Structural analysis using an AlphaFold2 protein model suggests that Rph7 encodes a putative NAC transcription factor with a zinc-finger BED domain with structural similarity to the N-terminal DNA-binding domain of the NAC transcription factor (ANAC019) from Arabidopsis. A global gene expression analysis suggests Rph7 mediates the activation and strength of the basal defence response. The isolation of Rph7 highlights the diversification of resistance mechanisms available for engineering disease control in crops.


Subject(s)
Arabidopsis , Basidiomycota , Eczema , Hordeum , Transcription Factors/genetics , Hordeum/genetics , Gene Expression Regulation , Poaceae , Arabidopsis/genetics , Plant Proteins/genetics , Plant Diseases/genetics
6.
J Fungi (Basel) ; 9(8)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37623619

ABSTRACT

Austropuccinia psidii is a biotrophic fungus that causes myrtle rust. First described in Brazil, it has since spread to become a globally important pathogen that infects more than 480 myrtaceous species. One of the most important commercial crops affected by A. psidii is eucalypt, a widely grown forestry tree. The A. psidii-Eucalyptus spp. interaction is poorly understood, but pathogenesis is likely driven by pathogen-secreted effector molecules. Here, we identified and characterized a total of 255 virulence effector candidates using a genome assembly of A. psidii strain MF-1, which was recovered from Eucalyptus grandis in Brazil. We show that the expression of seven effector candidate genes is modulated by cell wax from leaves sourced from resistant and susceptible hosts. Two effector candidates with different subcellular localization predictions, and with specific gene expression profiles, were transiently expressed with GFP-fusions in Nicotiana benthamiana leaves. Interestingly, we observed the accumulation of an effector candidate, Ap28303, which was upregulated under cell wax from rust susceptible E. grandis and described as a peptidase inhibitor I9 domain-containing protein in the nucleus. This was in accordance with in silico analyses. Few studies have characterized nuclear effectors. Our findings open new perspectives on the study of A. psidii-Eucalyptus interactions by providing a potential entry point to understand how the pathogen manipulates its hosts in modulating physiology, structure, or function with effector proteins.

7.
Int J Mol Sci ; 24(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37446042

ABSTRACT

Global barley production is threatened by plant pathogens, especially the rusts. In this study we used a targeted genotype-by-sequencing (GBS) assisted GWAS approach to identify rust resistance alleles in a collection of 287 genetically distinct diverse barley landraces and historical cultivars available in the Australian Grains Genebank (AGG) and originally sourced from Eastern Europe. The accessions were challenged with seven US-derived cereal rust pathogen races including Puccinia hordei (Ph-leaf rust) race 17VA12C, P. coronata var. hordei (Pch-crown rust) race 91NE9305 and five pathogenically diverse races of P. striiformis f. sp. hordei (Psh-stripe rust) (PSH-33, PSH-48, PSH-54, PSH-72 and PSH-100) and phenotyped quantitatively at the seedling stage. Novel resistance factors were identified on chromosomes 1H, 2H, 4H and 5H in response to Pch, whereas a race-specific QTL on 7HS was identified that was effective only to Psh isolates PSH-72 and PSH-100. A major effect QTL on chromosome 5HL conferred resistance to all Psh races including PSH-72, which is virulent on all 12 stripe rust differential tester lines. The same major effect QTL was also identified in response to leaf rust (17VA12C) suggesting this locus contains several pathogen specific rust resistance genes or the same gene is responsible for both leaf rust and stripe rust resistance. Twelve accessions were highly resistant to both leaf and stripe rust diseases and also carried the 5HL QTL. We subsequently surveyed the physical region at the 5HL locus for across the barley pan genome variation in the presence of known resistance gene candidates and identified a rich source of high confidence protein kinase and antifungal genes in the QTL region.


Subject(s)
Basidiomycota , Hordeum , Chromosome Mapping , Hordeum/genetics , Hordeum/microbiology , Disease Resistance/genetics , Australia , Phenotype , Basidiomycota/genetics , Plant Diseases/genetics , Plant Diseases/microbiology
8.
Plants (Basel) ; 12(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36840210

ABSTRACT

A panel of 114 genetically diverse barley lines were assessed in the greenhouse and field for resistance to the pathogen Puccinia hordei, the causal agent of barley leaf rust. Multi-pathotype tests revealed that 16.6% of the lines carried the all-stage resistance (ASR) gene Rph3, followed by Rph2 (4.4%), Rph1 (1.7%), Rph12 (1.7%) or Rph19 (1.7%). Five lines (4.4%) were postulated to carry the gene combinations Rph2+9.am, Rph2+19 and Rph8+19. Three lines (2.6%) were postulated to carry Rph15 based on seedling rust tests and genotyping with a marker linked closely to this gene. Based on greenhouse seedling tests and adult-plant field tests, 84 genotypes (73.7%) were identified as carrying APR, and genotyping with molecular markers linked closely to three known APR genes (Rph20, Rph23 and Rph24) revealed that 48 of the 84 genotypes (57.1%) likely carry novel (uncharacterized) sources of APR. Seven lines were found to carry known APR gene combinations (Rph20+Rph23, Rph23+Rph24 and Rph20+Rph24), and these lines had higher levels of field resistance compared to those carrying each of these three APR genes singly. GWAS identified 12 putative QTLs; strongly associated markers located on chromosomes 1H, 2H, 3H, 5H and 7H. Of these, the QTL on chromosome 7H had the largest effect on resistance response to P. hordei. Overall, these studies detected several potentially novel genomic regions associated with resistance. The findings provide useful information for breeders to support the utilization of these sources of resistance to diversify resistance to leaf rust in barley and increase resistance durability.

9.
New Solut ; 32(4): 243-251, 2023 02.
Article in English | MEDLINE | ID: mdl-36437704

ABSTRACT

An early epidemiologic study on groundwater contamination in the United States took place at an Environmental Protection Agency (EPA) Superfund site in Battle Creek Michigan. Volatile organic compounds (VOCs) consisting of chlorinated 2-carbon solvents were identified in private and municipal wells serving several communities. One major source of VOC was a solvent recovery operation near the municipal well field. The study modeled the VOC plume and investigated mortality and morbidity outcomes thought to be related to the VOC. Although quite statistically significant excess mortality and morbidity (hospital discharge and survey questionnaire) outcomes were observed, there were few associations with VOC water cumulative metrics. Another potentially dominant class of exposures could arise in VOC water contamination episodes from the diverse contents of spent solvents generated in multiple, local manufacturing activities. The findings at Battle Creek are re-interpreted in this light and the implications for Superfund-like investigation strategy and reporting are discussed.


Subject(s)
Environmental Monitoring , Volatile Organic Compounds , Humans , United States , Solvents/analysis , Water , Michigan
10.
Front Plant Sci ; 13: 980870, 2022.
Article in English | MEDLINE | ID: mdl-36275572

ABSTRACT

Barley leaf rust (BLR), caused by Puccinia hordei, is best controlled through genetic resistance. An efficient resistance breeding program prioritizes the need to identify, characterize, and map new sources of resistance as well as understanding the effectiveness, structure, and function of resistance genes. In this study, three mapping populations were developed by crossing Israelian barley lines "AGG-396," "AGG-397," and "AGG-403" (carrying unknown leaf rust resistance) with a susceptible variety "Gus" to characterize and map resistance. Genetic analysis of phenotypic data from rust testing F3s with a P. hordei pathotype 5457 P+ revealed monogenic inheritance in all three populations. Targeted genotyping-by-sequencing of the three populations detected marker trait associations in the same genomic region on the short arm of chromosome 2H between 39 and 57 Mb (AGG-396/Gus), 44 and 64 Mb (AGG-397/Gus), and 31 and 58 Mb (AGG-403/Gus), suggesting that the resistance in all three lines is likely conferred by the same locus (tentatively designated RphAGG396). Two Kompetitive allele-specific PCR (KASP) markers, HvGBSv2-902 and HvGBSv2-932, defined a genetic distance of 3.8 cM proximal and 7.1 cM distal to RphAGG396, respectively. To increase the marker density at the RphAGG396 locus, 75 CAPS markers were designed between two flanking markers. Integration of marker data resulted in the identification of two critical recombinants and mapping RphAGG396 between markers- Mloc-28 (40.75 Mb) and Mloc-41 (41.92 Mb) narrowing the physical window to 1.17 Mb based on the Morex v2.0 reference genome assembly. To enhance map resolution, 600 F2s were genotyped with markers- Mloc-28 and Mloc-41 and nine recombinants were identified, placing the gene at a genetic distance of 0.5 and 0.2 cM between the two markers, respectively. Two annotated NLR (nucleotide-binding domain leucine-rich repeat) genes (r2.2HG0093020 and r2.2HG0093030) were identified as the best candidates for RphAGG396. A closely linked marker was developed for RphAGG396 that can be used for marker-assisted selection.

11.
Front Plant Sci ; 13: 988322, 2022.
Article in English | MEDLINE | ID: mdl-36051292

ABSTRACT

Leaf rust of barley causes significant losses in crops of susceptible cultivars. Deploying host resistance is the most cost-effective and eco-sustainable strategy to protect the harvest. However, most known leaf rust resistance genes have been overcome by the pathogen due to the pathogen's evolution and adaptation. The discovery of novel sources of genetic resistance is vital to keep fighting against pathogen evolution. In this study, we investigated the genetic basis of resistance in barley breeding line GID 5779743 (GID) from ICARDA, found to carry high levels of seedling resistance to prevalent Australian pathotypes of Puccinia hordei. Multipathotype tests, genotyping, and marker-trait associations revealed that the resistance in GID is conferred by two independent genes. The first gene, Rph3, was detected using a linked CAPS marker and QTL analysis. The second gene was detected by QTL analysis and mapped to the same location as that of the Rph5 locus on the telomeric region of chromosome 3HS. The segregating ratio in F2 (conforming to 9 resistant: 7 susceptible genetic ratio; p > 0.8) and F3 (1 resistant: 8 segregating: 7 susceptible; p > 0.19) generations of the GID × Gus population, when challenged with pathotype 5477 P- (virulent on Rph3 and Rph5) suggested the interaction of two genes in a complementary fashion. This study demonstrated that Rph3 interacts with Rph5 or an additional locus closely linked to Rph5 (tentatively designated RphGID) in GID to produce an incompatible response when challenged with a pathotype virulent on Rph3+Rph5.

12.
Cardiovasc Ultrasound ; 20(1): 24, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36123701

ABSTRACT

BACKGROUND: The American College of Cardiology Core Cardiovascular Training Statement (COCATS) defined echocardiography core competencies and set the minimum recommend number of echocardiograms to perform (150) and interpret (300) for independent practice in echocardiography (level 2 training). Fellows may lack exposure to key pathologies that are relatively infrequent, however, even when achieving an adequate number of studies performed and interpreted. We hypothesized that cardiology fellows would lack exposure to 1 or more cardiac pathologies related to core competencies in COCATS when performing and interpreting the minimum recommend number of studies for level 2 training. METHODS: We retrospectively reviewed 11,250 reports from consecutive echocardiograms interpreted (7,500) and performed (3,750) by 25 cardiology fellows at a University tertiary referral hospital who graduated between 2015 and 2019. The first 300 echocardiograms interpreted and the first 150 echocardiograms performed by each fellow were included in the analysis. Echocardiography reports were reviewed for cardiac pathologies relating to core competencies defined in COCATS. RESULTS: All 25 fellows lacked exposure to 1 or more cardiac pathologies related to echocardiography core competencies despite meeting COCATS minimum recommended numbers for echocardiograms performed and interpreted. Pathologies for which 1 or more fellows encountered 0 cases despite meeting the minimum recommended numbers for both echocardiograms performed and interpreted included: pericardial constriction (16/25 fellows), aortic dissection (15/25 fellows), pericardial tamponade (4/25 fellows), valvular mass/thrombus (2/25 fellows), prosthetic valve dysfunction (1/25 fellows), and cardiac chamber mass/thrombus (1/25 fellows). CONCLUSIONS: Cardiology fellows who completed the minimum recommend number of echocardiograms performed and interpreted for COCATS level 2 training frequently lacked exposure to cardiac pathologies, even in a University tertiary referral hospital setting. These data suggest that fellowship programs should monitor pathology case counts for each fellow in training, in addition to the minimum recommend number of echocardiograms defined by COCATS, to ensure competency for independent practice in echocardiography.


Subject(s)
Cardiology , Heart Defects, Congenital , Cardiology/education , Clinical Competence , Echocardiography , Humans , Retrospective Studies , United States
14.
Genes (Basel) ; 13(6)2022 05 27.
Article in English | MEDLINE | ID: mdl-35741726

ABSTRACT

Breeding for leaf rust resistance has been successful worldwide and is underpinned by the discovery and characterisation of genetically diverse sources of resistance. An English scientist, Arthur Watkins, collected pre-Green Revolution wheat genotypes from 33 locations worldwide in the early part of the 20th Century and this collection is now referred to as the 'Watkins Collection'. A common wheat genotype, Aus27352 from Yugoslavia, showed resistance to currently predominating Australian pathotypes of the wheat leaf rust pathogen. We crossed Aus27352 with a leaf rust susceptible wheat selection Avocet S and a recombinant inbred line (RIL) F6 population of 200 lines was generated. Initial screening at F3 generation showed monogenic segregation for seedling response to leaf rust in Aus27352. These results were confirmed by screening the Aus27352/Avocet S RIL population. The underlying locus was temporarily named LrAW2. Bulked segregant analysis using the 90K Infinium SNP array located LrAW2 in the long arm of chromosome 2B. Tests with molecular markers linked to two leaf rust resistance genes, Lr50 and Lr58, previously located in chromosome 2B, indicated the uniqueness of LrAW2 and it was formally designated Lr82. Kompetitive allele-specific polymerase chain reaction assays were developed for Lr82-linked SNPs. KASP_22131 mapped 0.8 cM proximal to Lr82 and KASP_11333 was placed 1.2 cM distal to this locus. KASP_22131 showed 91% polymorphism among a set of 89 Australian wheat cultivars. We recommend the use of KASP_22131 for marker assisted pyramiding of Lr82 in breeding programs following polymorphism check on parents.


Subject(s)
Basidiomycota , Triticum , Australia , Basidiomycota/genetics , Chromosome Mapping , Disease Resistance/genetics , Genes, Plant , Genetic Markers , Plant Breeding , Plant Diseases/genetics , Triticum/genetics
15.
J Occup Environ Hyg ; 19(8): 489-499, 2022 08.
Article in English | MEDLINE | ID: mdl-35727158

ABSTRACT

The Continuous NHANES Survey provides detailed health and environmental chemical burden information on the U.S. population. As of 2012, there were data for 72,000 participants. Based on single biomarker determinations, cumulative burdens were estimated. Because age distributions would differ comparing ambient environmental and occupational exposures, a procedure to distinguish ambient from likely occupational exposures was applied. Associations are reported for osteoporosis and kidney disease-related outcomes with cadmium, lead, and other metals. Cumulative cadmium burden (from blood cadmium, ambient and occupational) was a strong predictor of bone fracture risk and ambient tungsten also had a positive association. Cumulative lead (ambient and occupational) had a negative ("protective") association with fractures as did mercury (occupational). Bone mineral density was statistically significant and similarly predicted by metal exposures. Kidney disease was significantly associated with cumulative lead burdens from both the estimated ambient and occupational sources and with ambient blood cadmium but was most strongly associated with cumulative occupational uranium burden. Systolic blood pressure statistically significantly increased with cumulative ambient and occupational lead (blood) burden and with ambient cadmium and cobalt. Diastolic blood pressure was significantly associated with several cadmium and cobalt metrics along with ambient and occupational cumulative burdens for lead. For environmental substances with burden half-lives measured in years, NHANES offers opportunities for hypothesis generation and confirmation.


Subject(s)
Kidney Diseases , Osteoporosis , Cadmium , Cobalt , Environmental Exposure/analysis , Feasibility Studies , Humans , Metals , Nutrition Surveys , Osteoporosis/epidemiology
16.
PLoS Pathog ; 18(5): e1010439, 2022 05.
Article in English | MEDLINE | ID: mdl-35617196

ABSTRACT

Sexual reproduction, mutation, and reassortment of nuclei increase genotypic diversity in rust fungi. Sexual reproduction is inherent to rust fungi, coupled with their coevolved plant hosts in native pathosystems. Rust fungi are hypothesised to exchange nuclei by somatic hybridisation with an outcome of increased genotypic diversity, independent of sexual reproduction. We provide criteria to demonstrate whether somatic exchange has occurred, including knowledge of parental haplotypes and rejection of fertilisation in normal rust life cycles.


Subject(s)
Basidiomycota , Plant Diseases , Animals , Basidiomycota/genetics , Fungi , Life Cycle Stages , Plant Diseases/microbiology , Reproduction
17.
Nat Commun ; 13(1): 2386, 2022 05 02.
Article in English | MEDLINE | ID: mdl-35501307

ABSTRACT

Leaf rust, caused by Puccinia hordei, is an economically significant disease of barley, but only a few major resistance genes to P. hordei (Rph) have been cloned. In this study, gene Rph3 was isolated by positional cloning and confirmed by mutational analysis and transgenic complementation. The Rph3 gene, which originated from wild barley and was first introgressed into cultivated Egyptian germplasm, encodes a unique predicted transmembrane resistance protein that differs from all known plant disease resistance proteins at the amino acid sequence level. Genetic profiles of diverse accessions indicated limited genetic diversity in Rph3 in domesticated germplasm, and higher diversity in wild barley from the Eastern Mediterranean region. The Rph3 gene was expressed only in interactions with Rph3-avirulent P. hordei isolates, a phenomenon also observed for transcription activator-like effector-dependent genes known as executors conferring resistance to Xanthomonas spp. Like known transmembrane executors such as Bs3 and Xa7, heterologous expression of Rph3 in N. benthamiana induced a cell death response. The isolation of Rph3 highlights convergent evolutionary processes in diverse plant-pathogen interaction systems, where similar defence mechanisms evolved independently in monocots and dicots.


Subject(s)
Basidiomycota , Hordeum , Basidiomycota/physiology , Hordeum/genetics , Membrane Proteins , Plant Diseases/genetics , Plant Proteins/genetics , Puccinia
18.
Microorganisms ; 10(2)2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35208838

ABSTRACT

Austropuccinia psidii is a fungal plant pathogen that infects species within the Myrtaceae, causing the disease myrtle rust. Myrtle rust is causing declines in populations within natural and managed ecosystems and is expected to result in species extinctions. Despite this, variation in response to A. psidii exist within some species, from complete susceptibility to resistance that prevents or limits infection by the pathogen. Untargeted metabolomics using Ultra Performance Liquid Chromatography with Ion Mobility followed by analysis using MetaboAnalyst 3.0, was used to explore the chemical defence profiles of resistant, hypersensitive and susceptible phenotypes within Melaleuca quinquenervia during the early stages of A. psidii infection. We were able to identify three separate pools of secondary metabolites: (i) metabolites classified structurally as flavonoids that were naturally higher in the leaves of resistant individuals prior to infection, (ii) organoheterocyclic and carbohydrate-related metabolites that varied with the level of host resistance post-infection, and (iii) metabolites from the terpenoid pathways that were responsive to disease progression regardless of resistance phenotype suggesting that these play a minimal role in disease resistance during the early stages of colonization of this species. Based on the classes of these secondary metabolites, our results provide an improved understanding of key pathways that could be linked more generally to rust resistance with particular application within Melaleuca.

19.
Plant Cell Environ ; 44(12): 3526-3544, 2021 12.
Article in English | MEDLINE | ID: mdl-34591319

ABSTRACT

Plant root-produced constitutive and inducible defences inhibit pathogenic microorganisms within roots and in the rhizosphere. However, regulatory mechanisms underlying host responses during root-pathogen interactions are largely unexplored. Using the model species Brachypodium distachyon (Bd), we studied transcriptional and metabolic responses altered in Bd roots following challenge with Fusarium graminearum (Fg), a fungal pathogen that causes diseases in diverse organs of cereal crops. Shared gene expression patterns were found between Bd roots and spikes during Fg infection associated with the mycotoxin deoxynivalenol (DON). Overexpression of BdMYB78, an up-regulated transcription factor, significantly increased root resistance during Fg infection. We show that Bd roots recognize encroaching Fg prior to physical contact by altering transcription of genes associated with multiple cellular processes such as reactive oxygen species and cell development. These changes coincide with altered levels of secreted host metabolites detected by an untargeted metabolomic approach. The secretion of Bd metabolites was suppressed by Fg as enhanced levels of defence-associated metabolites were found in roots during pre-contact with a Fg mutant defective in host perception and the ability to cause disease. Our results help to understand root defence strategies employed by plants, with potential implications for improving the resistance of cereal crops to soil pathogens.


Subject(s)
Brachypodium/microbiology , Fusarium/physiology , Metabolome , Mycotoxins/metabolism , Transcriptome , Trichothecenes/metabolism , Adaptation, Biological , Brachypodium/genetics , Brachypodium/immunology , Brachypodium/metabolism , Host Microbial Interactions , Plant Immunity/physiology , Plant Roots/microbiology , Signal Transduction/immunology
20.
Mol Ecol ; 30(24): 6566-6584, 2021 12.
Article in English | MEDLINE | ID: mdl-34543497

ABSTRACT

Long-distance migration and host adaptation by transboundary plant pathogens often brings detrimental effects to important agroecosystems. Efficient surveillance as a basis for responding to the dynamics of such pathogens is often hampered by a lack of information on incursion origin, evolutionary pathways and the genetic basis of rapidly evolving virulence across larger timescales. Here, we studied these genetic features by using historical isolates of the obligate biotrophic pathogen Puccinia striiformis f. sp. tritici (Pst), which causes one of the most widespread and devastating diseases, stripe (yellow) rust, of wheat. Through a combination of genotypic, phenotypic and genomic analyses, we assigned eight Pst isolates representing putative exotic Pst incursions into Australia to four previously defined genetic groups, PstS0, PstS1, PstS10 and PstS13. We showed that isolates of an additional incursion of P. striiformis, known locally as P. striiformis f. sp. pseudo-hordei, had a new and unique multilocus SSR genotype (MLG). We provide results of overall genomic variation of representative Pst isolates from each genetic group by comparative genomic analyses. We showed that isolates within the PstS1 and PstS13 genetic groups are most distinct at the whole-genome variant level from isolates belonging to genetic group PstS0, whereas the isolate from the PstS10 genetic group is intermediate. We further explored variable gene content, including putative effectors, representing both shared but also unique genetic changes that have occurred following introduction, some of which may additionally account for local adaptation of these isolates to triticale. Our genotypic and genomic data revealed new genetic insights into the evolution of diverse phenotypes of rust pathogens following incursion into a geographically isolated continental region.


Subject(s)
Basidiomycota , Plant Diseases , Basidiomycota/genetics , Genotype , Puccinia , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...