Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Prev Nutr Food Sci ; 27(2): 223-233, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35919565

ABSTRACT

Natural compounds are a good substitute for synthetic antioxidants. Attempts have been made to characterize the antioxidant capacity of natural resources (e.g., medicinal plants). Thus, the Rheum emodi Wall was evaluated using liquid chromatography with diode array detection and electrospray ionization-mass spectrometry. Three antioxidant compounds (i.e., myricitrin, myricetin-3-galloyl rhamnoside, and myricetin) were isolated, identified, and used to screen the antioxidant capacity of the new compounds. 2,2-Diphenyl-1-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and superoxide dismutase assay results are presented in the half-maximal inhibitory concentration values ranging 1.50∼28.46, 102.01∼137.55, and 4.06∼15.74 µg/mL, respectively. Myricetin had the highest antioxidant activity among the other compounds. A significantly positive correlation was noted between the ethyl acetate fraction and the antioxidant compound. In a partial least squares-discriminant analysis model, identified antioxidant compounds were shown to play a role in the structure of the compound and its contents based on the antioxidant activity. The study suggests that myricetin from R. emodi possesses the most potent antioxidant activity, and thus is the most efficient in extracting antioxidant contents.

2.
Pharmaceutics ; 13(10)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34684031

ABSTRACT

The effects of the manufacturing process and the regeneration of Shirasu porous glass (SPG) membranes were investigated on the reproducibility of protein precipitants, termed protein microbeads. Intravenous immunoglobulin (IVIG) was selected as a model protein to produce its microbeads in seven different cases. The results showed that the hydrophobically modified SPG membrane produced finer microbeads than the hydrophilic SPG membrane, but this was inconsistent when using the general regeneration method. Its reproducibility was determined to be mostly dependent on rinsing the SPG membrane prior to the modification and on the protein concentration used for emulsification. The higher concentration could foul and plug the membrane during protein release and thus the membrane must be washed thoroughly before hydrophobic modification. Moreover, the membrane regenerated by silicone resin dissolved in ethanol had better reproducibility than silicone resin dissolved in water. On the other hand, rinsing the protein precipitant with cold ethanol after the emulsification was not favorable and induced protein aggregation. With the addition of trehalose, the purity of the IVIG microbeads was almost the same as before microbeadification. Therefore, the regeneration method, protein concentration, and its stabilizer are key to the success of protein emulsification and precipitation using the SPG membrane.

3.
Int J Biol Macromol ; 185: 935-948, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34237365

ABSTRACT

A protein precipitation technique was optimized to produce biophysically stable 'protein microbeads', applicable to highly concentrated protein formulation. Initially, production of BSA microbeads was performed using rapid dehydration by vortexing in organic solvents followed by cold ethanol treatment and a vacuum drying. Out of four solvents, n-octanol produced the most reversible microbeads upon reconstitution. A Shirasu porous glass (SPG) membrane emulsification technique was utilized to enhance the size distribution and manufacturing process of the protein microbeads with a marketized human IgG solution. Process variants such as dehydration time, temperature, excipients, drying conditions, and initial protein concentration were evaluated in terms of the quality of IgG microbeads and their reversibility. The hydrophobized SPG membrane produced a narrow size distribution of the microbeads, which were further enhanced by shorter dehydration time, low temperature, minimized the residual solvents, lower initial protein concentration, and addition of trehalose to the IgG solution. Final reversibility of the IgG microbeads with trehalose was over 99% at both low and high protein concentrations. Moreover, the formulation was highly stable under repeated mechanical shocks and at an elevated temperature compared to its liquid state. Its in vivo pharmacokinetic profiles in rats were consistent before and after the 'microbeadification'.


Subject(s)
1-Octanol/chemistry , Immunoglobulin G/administration & dosage , Immunoglobulin G/chemistry , Serum Albumin, Bovine/pharmacokinetics , Animals , Chemical Precipitation , Desiccation , Drug Compounding , Drug Stability , Humans , Immunoglobulin G/pharmacology , Male , Microspheres , Particle Size , Rats , Serum Albumin, Bovine/chemistry , Time , Vacuum
4.
Molecules ; 26(9)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925748

ABSTRACT

Using natural products as antioxidant agents has been beneficial to replace synthetic products. Efforts have been made to profile the antioxidant capacities of natural resources, such as medicinal plants. The polyphenol content of Himalayan rhubarb, Rheum emodi wall, was measured and the antioxidant activity was determined using DPPH and ABTS+ assay, and the oxidative stress was assessed using SOD enzymatic assay. Five different solvent fractions, n-hexane, n-butanol, ethyl acetate, dichloromethane, and water, were used for screening the antioxidant capacity in effort to determine the optimum extraction solvent. The total phenolic contents for R. emodi fractions ranged from 27.76 to 209.21 mg of gallic acid equivalents (GAE)/g of dry weight. DPPH and ABTS+ assay results are presented into IC50 values, ranged from 21.52 to 2448.79 µg/mL and 90.25 to 1718.05 µg/mL, respectively. The ethyl acetate fraction had the highest antioxidant activity among other fractions. Also, n-butanol and water fractions showed significantly lower IC50 values than the positive control in DPPH radical scavenging activity. The IC50 values of SOD assay of fractions ranged from 2.31 to 64.78 µg/mL. A similar result was observed with ethyl acetate fraction showing the highest SOD radical scavenging activity. The study suggests that the ethyl acetate fraction of R. emodi possess the strongest antioxidant activity, thus the most efficient in extracting antioxidant contents. Moreover, a highly significant correlation was shown between total polyphenol content and antioxidant activity screening assays. The compounds related to the antioxidant activity of R. emodi were identified to myricitrin, myricetin 3-galloyl rhamnoside, and myricetin, which have not been reported in studies about R. emodi before.


Subject(s)
Antioxidants/pharmacology , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Rheum/chemistry , Antioxidants/chemistry , Flavonoids/chemistry , Flavonoids/pharmacology , Humans , Phenols/chemistry , Phenols/pharmacology , Plant Extracts/chemistry , Polyphenols/chemistry , Polyphenols/pharmacology , Solvents/chemistry , Superoxide Dismutase/antagonists & inhibitors , Superoxide Dismutase/chemistry
5.
Int J Biol Macromol ; 107(Pt A): 730-740, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28939511

ABSTRACT

Effects of annealing steps during the freeze drying process on etanercept, model protein, were evaluated using various analytical methods. The annealing was introduced in three different ways depending on time and temperature. Residual water contents of dried cakes varied from 2.91% to 6.39% and decreased when the annealing step was adopted, suggesting that they are directly affected by the freeze drying methods Moreover, the samples were more homogenous when annealing was adopted. Transition temperatures of the excipients (sucrose, mannitol, and glycine) were dependent on the freeze drying steps. Size exclusion chromatography showed that monomer contents were high when annealing was adopted and also they decreased less after thermal storage at 60°C. Dynamic light scattering results exhibited that annealing can be helpful in inhibiting aggregation and that thermal storage of freeze-dried samples preferably induced fragmentation over aggregation. Shift of circular dichroism spectrum and of the contents of etanercept secondary structure was observed with different freeze drying steps and thermal storage conditions. All analytical results suggest that the physicochemical properties of etanercept formulation can differ in response to different freeze drying steps and that annealing is beneficial for maintaining stability of protein and reducing the time of freeze drying process.


Subject(s)
Etanercept/chemistry , Protein Aggregates , Protein Structure, Secondary , Calorimetry, Differential Scanning , Crystallization , Dynamic Light Scattering , Freeze Drying , Glycine/chemistry , Mannitol/chemistry , Physical Phenomena , Sucrose/chemistry , Temperature
6.
Mol Cancer Ther ; 8(8): 2276-85, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19638452

ABSTRACT

The proapoptotic tumor necrosis factor-related apoptosis inducing ligand (TRAIL) receptors death receptor (DR) 4 and DR5 are attractive targets to develop the receptor-specific agonistic monoclonal antibodies (mAb) as anticancer agents because of their tumor-selective cell death-inducing activity. Here, we report a novel agonistic mAb, AY4, raised against human DR4 in mice. ELISA analysis revealed that AY4 specifically bound to DR4 without competition with TRAIL for the binding. Despite distinct binding regions of AY4 on DR4 from those of TRAIL, AY4 as a single agent induced caspase-dependent apoptotic cell death of several tumor types through the extrinsic and/or intrinsic pathways without substantial cytotoxicity to normal human hepatocytes. Further, the AY4-sensitive cells followed the same cell death characteristics classified as type I and type II cells by the response to TRAIL, suggesting that the cell death profiles in responses to DR4 and/or DR5 stimulation are determined by the downstream signaling of the receptor rather than the kind of receptor. Noticeably, AY4 efficiently induced cell death of Jurkat cells, which have been reported to be resistant to other anti-DR4 agonistic mAbs, most likely due to the unique epitope property of AY4. In vivo administration of AY4 significantly inhibited tumor growth of human non-small cell lung carcinoma preestablished in athymic nude mice. Conclusively, our results provide further insight into the DR4-mediated cell death signaling and potential use of AY4 mAb as an anticancer therapeutic agent, particularly for DR4-responsive tumor types.


Subject(s)
Antibodies, Monoclonal/pharmacology , Apoptosis , Receptors, Tumor Necrosis Factor/antagonists & inhibitors , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Cell Death , Cell Line, Tumor , Hepatocytes/pathology , Humans , Jurkat Cells , Male , Mice , Mice, Inbred BALB C , Receptors, TNF-Related Apoptosis-Inducing Ligand , Receptors, Tumor Necrosis Factor/immunology , Receptors, Tumor Necrosis Factor/metabolism
7.
Exp Mol Med ; 40(1): 35-42, 2008 Feb 29.
Article in English | MEDLINE | ID: mdl-18305396

ABSTRACT

In order to develop an anti-human TNF-alpha mAb, mice were immunized with recombinant human TNF-alpha. A murine mAb, TSK114, which showed the highest binding activity for human TNF-alpha was selected and characterized. TSK114 specifically bound to human TNF-alpha without cross-reactivity with the homologous murine TNF-alpha and human TNF-beta. TSK114 was found to be of IgG1 isotype with kappa light chain. The nucleotide sequences of the variable regions of TSK114 heavy and light chains were determined and analyzed for the usage of gene families for the variable (V), diversity (D), and joining (J) segments. Kinetic analysis of TSK114 binding to human TNF-alpha by surface plasmon resonance technique revealed a binding affinity (K(D)) of approximately 5.3 pM, which is about 1,000- and 100-fold higher than those of clinically relevant infliximab (Remicade) and adalimumab (Humira) mAbs, respectively. TSK114 neutralized human TNF-alpha-mediated cytotoxicity in proportion to the concentration, exhibiting about 4-fold greater efficiency than those of infliximab and adalimumab in WEHI 164 cells used as an in vitro model system. These results suggest that TSK114 has the potential to be developed into a therapeutic TNF-alpha-neutralizing antibody with picomolar affinity.


Subject(s)
Antibodies, Monoclonal/immunology , Antibody Affinity/immunology , Tumor Necrosis Factor-alpha/immunology , Adalimumab , Amino Acid Sequence , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal, Humanized , Antibodies, Monoclonal, Murine-Derived , Antibody Specificity , Base Sequence , Blotting, Western , Cell Line , Cytotoxicity, Immunologic , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin Variable Region/genetics , Infliximab , Kinetics , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Neutralization Tests , Sequence Analysis, Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...