Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Faraday Discuss ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38766945

ABSTRACT

Mirrors for atoms and molecules are essential tools for matter-wave optics with neutral particles. Their realization has required either a clean and atomically smooth crystal surface, sophisticated tailored electromagnetic fields, nanofabrication, or particle cooling because of the inherently short de Broglie wavelengths and strong interactions of atoms with surfaces. Here, we demonstrate reflection of He atoms from inexpensive, readily available, and robust gratings designed for light waves. Using different types of blazed gratings with different periods, we study how microscopic and macroscopic grating properties affect the mirror performance. A holographic grating with 417 nm period shows reflectivity up to 47% for He atoms, demonstrating that commercial gratings can serve as mirrors for thermal energy atoms and molecules. We also observe reflection of He2 and He3 which implies that the grating might also function as a mirror for other breakable particles that, under typical conditions, do not scatter nondestructively from a solid surface such as, e.g., metastable atoms or antihydrogen atoms.

2.
Nanomaterials (Basel) ; 13(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37570518

ABSTRACT

Toxic industrial chemicals (TICs), when accidentally released into the workplace or environment, often form a gaseous mixture that complicates detection and mitigation measures. However, most of the existing gas sensors are unsuitable for detecting such mixtures. In this study, we demonstrated the detection and identification of gaseous mixtures of TICs using a chemiresistor array of single-walled carbon nanotubes (SWCNTs). The array consists of three SWCNT chemiresistors coated with different molecular/ionic species, achieving a limit of detection (LOD) of 2.2 ppb for ammonia (NH3), 820 ppb for sulfur dioxide (SO2), and 2.4 ppm for ethylene oxide (EtO). By fitting the concentration-dependent sensor responses to an adsorption isotherm, we extracted parameters that characterize each analyte-coating combination, including the proportionality and equilibrium constants for adsorption. Principal component analysis confirmed that the sensor array detected and identified mixtures of two TIC gases: NH3/SO2, NH3/EtO, and SO2/EtO. Exposing the sensor array to three TIC mixtures with various EtO/SO2 ratios at a fixed NH3 concentration showed an excellent correlation between the sensor response and the mixture composition. Additionally, we proposed concentration ranges within which the sensor array can effectively detect the gaseous mixtures. Being highly sensitive and capable of analyzing both individual and mixed TICs, our gas sensor array has great potential for monitoring the safety and environmental effects of industrial chemical processes.

3.
Nature ; 611(7937): 688-694, 2022 11.
Article in English | MEDLINE | ID: mdl-36352223

ABSTRACT

Metal halide perovskites are attracting a lot of attention as next-generation light-emitting materials owing to their excellent emission properties, with narrow band emission1-4. However, perovskite light-emitting diodes (PeLEDs), irrespective of their material type (polycrystals or nanocrystals), have not realized high luminance, high efficiency and long lifetime simultaneously, as they are influenced by intrinsic limitations related to the trade-off of properties between charge transport and confinement in each type of perovskite material5-8. Here, we report an ultra-bright, efficient and stable PeLED made of core/shell perovskite nanocrystals with a size of approximately 10 nm, obtained using a simple in situ reaction of benzylphosphonic acid (BPA) additive with three-dimensional (3D) polycrystalline perovskite films, without separate synthesis processes. During the reaction, large 3D crystals are split into nanocrystals and the BPA surrounds the nanocrystals, achieving strong carrier confinement. The BPA shell passivates the undercoordinated lead atoms by forming covalent bonds, and thereby greatly reduces the trap density while maintaining good charge-transport properties for the 3D perovskites. We demonstrate simultaneously efficient, bright and stable PeLEDs that have a maximum brightness of approximately 470,000 cd m-2, maximum external quantum efficiency of 28.9% (average = 25.2 ± 1.6% over 40 devices), maximum current efficiency of 151 cd A-1 and half-lifetime of 520 h at 1,000 cd m-2 (estimated half-lifetime >30,000 h at 100 cd m-2). Our work sheds light on the possibility that PeLEDs can be commercialized in the future display industry.

4.
Phys Chem Chem Phys ; 24(36): 21593-21600, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-35971780

ABSTRACT

We report on a method of enhanced elastic and coherent reflection of 4He2 and 4He3 from a micro-structured solid surface under grazing incidence conditions. The van der Waals bound ground-state helium clusters exhibit fundamental quantum effects: 4He2, characterized by a single ro-vibrational bound state of 10-7 eV dissociation energy, is known to be a quantum halo state; and 4He3 is the only electronic ground-state triatomic system possessing an Efimov state in addition to the ro-vibrational ground state. Classical methods to select and manipulate these clusters by interaction with a solid surface fail due to their exceedingly fragile bonds. Quantum reflection under grazing incidence conditions was demonstrated as a viable tool for elastic scattering from a solid surface but suffers from small reflection probabilities for typical conditions. Here we demonstrate that multiple-edge diffraction enables enhanced elastic scattering of the clusters from a solid. A dual-period reflection grating, where the strips consist of micro-structured edge arrays, shows an up to ten fold increased reflection probability as compared to its conventional counterpart where the strips are plane patches enabling quantum reflection of the clusters. The observed diffraction patterns of the clusters provide evidence of the coherent and elastic nature of scattering by multiple-edge diffraction.

5.
Methods Mol Biol ; 2437: 159-169, 2022.
Article in English | MEDLINE | ID: mdl-34902147

ABSTRACT

Mass spectrometry imaging (MSI) allows label-free detection of a wide range of biomolecules and simultaneously provides their spatial distributions. In particular, MSI by matrix-assisted laser desorption/ionization mass spectrometry (MALDI) has been widely used in biomolecule analysis. However, quantitation in MALDI-MSI is limited by matrix-deposition heterogeneity, analyte extraction area, and analyte-matrix cocrystallization. In this chapter, a microstructured PDMS stamp is utilized to precisely control the matrix deposition area and the analyte extraction area. We describe here simple steps-including stamp fabrication, matrix application, and data-acquisition guideline-for the quantitative analysis of adsorbed peptides on hydrophobic surfaces.


Subject(s)
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Diagnostic Imaging , Diagnostic Tests, Routine , Peptides
6.
Phys Chem Chem Phys ; 23(13): 8030-8036, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33587734

ABSTRACT

We report on an experimental test of Babinet's principle in quantum reflection of an atom beam from diffraction gratings. The He beam is reflected and diffracted from a square-wave grating at near grazing-incidence conditions. According to Babinet's principle the diffraction peak intensities (except for the specular-reflected beam) are expected to be identical for any pair of gratings of complementary geometry. We observe conditions where Babinet's principle holds and also where it fails. Our data indicate breakdown conditions when either the incident or a diffracted beam propagates close to the grating surface. At these conditions, the incident or the diffracted He beam is strongly affected by the dispersive interaction between the atoms and the grating surface. Babinet's principle is also found to break down, when the complementary grating pair shows a large asymmetry in the strip widths. For very small strip widths, edge diffraction from half planes becomes dominant, whereas for the complementary wide strips the atom-surface interactions leads to a strong reduction of all non-specular diffraction peak intensities.

7.
ACS Appl Mater Interfaces ; 13(1): 1270-1276, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33356113

ABSTRACT

Although the doping of graphene grown by chemical vapor deposition is crucial in graphene-based electronics, noninvasive methods of n-type doping have not been widely investigated in comparison with p-type doping methods. We developed a convenient and robust method for the noninvasive n-type doping of graphene, wherein electrons are directly injected from sodium anions into the graphene. This method involves immersing the graphene in solutions of [K(15-crown-5)2]Na prepared by dissolving a sodium-potassium (NaK) alloy in a 15-crown-5 solution. The n-type doping of the graphene was confirmed by downshifted G and 2D bands in Raman spectra and by the Dirac point shifting to a negative voltage. The electron-injected graphene showed no sign of structural damage, exhibited higher carrier mobilities than that of pristine graphene, and remained n-doped for over a month of storage in air. In addition, we demonstrated that electron injection enhances noncovalent interactions between graphene and metallomacrocycle molecules without requiring a linker, as used in previous studies, suggesting several potential applications of the method in modifying graphene with various functionalities.

8.
Anal Chem ; 92(13): 8715-8721, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32449357

ABSTRACT

Mass spectrometry imaging (MSI) based on matrix-assisted laser desorption/ionization (MALDI) provides information on the identification and spatial distribution of biomolecules. Quantitative analysis, however, has been challenging largely due to heterogeneity in both the size of the matrix crystals and the extraction area. In this work, we present a compartmentalized elastomeric stamp for quantitative MALDI-MSI of adsorbed peptides. Filling the compartments with matrix solution and stamping onto a planar substrate extract and concentrate analytes adsorbed in each compartment into a single analyte-matrix cocrystal over the entire stamped area. Walls between compartments help preserve spatial information on the adsorbates. The mass intensity of the cocrystals directly correlates with the surface coverage of analytes, which enables not only quantitative analysis but estimation of an equilibrium constant for the adsorption. We demonstrate via MALDI-MSI relative quantitation of peptides adsorbed along a microchannel with varying surface coverages.


Subject(s)
Peptides/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Adsorption , Fluorescein-5-isothiocyanate/chemistry , Lab-On-A-Chip Devices , Microscopy, Fluorescence
9.
RSC Adv ; 9(39): 22205-22210, 2019 Jul 17.
Article in English | MEDLINE | ID: mdl-35519454

ABSTRACT

Owing to their extremely high surface-to-volume ratio, carbon nanotubes (CNTs) are excellent adsorbents for the removal of organic pollutants. However, retrieval or collection of the CNTs after adsorption in existing approaches, which utilize CNTs dispersed in a solution of pollutants, is often more challenging than the removal of pollutants. In this study, we address this challenge by packaging vertically aligned CNTs into a PTFE heat-shrink tubing. Insertion of CNTs into the tubing and subsequent thermal shrinkage densified the CNTs radially by 35% and also reduced wrinkles in the nanotubes. The CNT-based adsorption tube with a circular cross-section enabled both easy functionalization of CNTs and facile connection to a source of polluted water, which we demonstrated for the removal of phenolic compounds. We purified and carboxylated CNTs, by flowing a solution of nitric acid through the tubing, and obtained adsorption capacities of 115, 124, and 81.2 mg g-1 for 0.5 g L-1 of phenol, m-cresol, 2-chlorophenol, respectively. We attribute the high adsorption capacity of our platform to efficient adsorbate-CNT interaction within the narrow interstitial channels between the aligned nanotubes. The CNT-based adsorption tubes are highly promising for the simple and efficient removal of phenolic and other types of organic pollutants.

10.
RSC Adv ; 9(58): 33976-33980, 2019 Oct 18.
Article in English | MEDLINE | ID: mdl-35528903

ABSTRACT

Graphene has attracted significant attention from researchers in recent years as a gas sensing material, because of its atom-thick 2-D structure, extremely high surface-to-volume ratio, and high carrier mobility. However, chemiresistive gas sensors based on graphene have a drawback of low sensitivity to organophosphates, including dimethyl methylphosphonate (DMMP), a simulant of the nerve agent sarin. In this study, we report the detection of 1.3 ppm DMMP, the highest sensitivity reported to date, using graphene chemiresistors, by non-covalently functionalizing graphene with N-substituted triphenylene. The functionalized graphene sensor exhibits a two orders of magnitude higher response to DMMP than to other compounds. This high sensitivity and selectivity are attributed to the strong hydrogen bonding between DMMP and N-substituted triphenylene, as well as the hole-doping effect caused by triphenylene, which increases the binding affinity to the electron-donating DMMP. The proposed approach for simple functionalization of graphene with substituted triphenylene can potentially be employed in tuning the properties of other conjugated nanomaterials, such as carbon nanotubes and graphene nanoribbons, to detect various target analytes.

11.
Chem Commun (Camb) ; 54(45): 5688-5691, 2018 May 31.
Article in English | MEDLINE | ID: mdl-29722773

ABSTRACT

We demonstrate that a donut-shaped surface pattern consisting of a central hydrophobic region and a surrounding hydrophilic region simultaneously concentrates and desalts a solution of neuropeptides with a high salt content. Our approach greatly simplifies the sample preparation process for MALDI mass spectrometry.


Subject(s)
Neuropeptides/chemistry , Saline Waters/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Angiotensin I/chemistry , Bradykinin/analogs & derivatives , Bradykinin/chemistry , Corticotropin-Like Intermediate Lobe Peptide/chemistry , Gold/chemistry , Hydrophobic and Hydrophilic Interactions , Kinetics , Limit of Detection , Models, Chemical , Silicon/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation , Sulfhydryl Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...