Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Cancer Res Treat ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39300929

ABSTRACT

Purpose: Cancer poses a significant global health challenge, demanding precise genomic testing for individualized treatment strategies. Targeted-panel sequencing (TPS) has improved personalized oncology but often lacks comprehensive coverage of crucial cancer alterations. Whole-genome sequencing (WGS) addresses this gap, offering extensive genomic testing. This study demonstrates the medical potential of WGS. Materials and Methods: This study evaluates target-enhanced WGS (TE-WGS), a clinical-grade WGS method sequencing both cancer and matched normal tissues. Forty-nine patients with various solid cancer types underwent both TE-WGS and TruSight Oncology 500 (TSO500), one of the mainstream TPS approaches. Results: TE-WGS detected all variants reported by TSO500 (100%, 498/498). A high correlation in variant allele fractions (VAF) was observed between TE-WGS and TSO500 (r=0.978). Notably, 223 variants (44.8%) within the common set were discerned exclusively by TE-WGS in peripheral blood, suggesting their germline origin. Conversely, the remaining subset of 275 variants (55.2%) were not detected in peripheral blood using the TE-WGS, signifying them as bona fide somatic variants. Further, TE-WGS provided accurate copy number profiles, fusion genes, microsatellite instability (MSI), and homologous-recombination deficiency (HRD) scores, which were essential for clinical decision-making. Conclusion: TE-WGS is a comprehensive approach in personalized oncology, matching TSO500's key biomarker detection capabilities. It uniquely identifies germline variants and genomic instability markers, offering additional clinical actions. Its adaptability and cost-effectiveness underscore its clinical utility, making TE-WGS a valuable tool in personalized cancer treatment.

2.
Nat Genet ; 56(8): 1665-1677, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39039280

ABSTRACT

Somatic cells accumulate genomic alterations with age; however, our understanding of mitochondrial DNA (mtDNA) mosaicism remains limited. Here we investigated the genomes of 2,096 clones derived from three cell types across 31 donors, identifying 6,451 mtDNA variants with heteroplasmy levels of ≳0.3%. While the majority of these variants were unique to individual clones, suggesting stochastic acquisition with age, 409 variants (6%) were shared across multiple embryonic lineages, indicating their origin from heteroplasmy in fertilized eggs. The mutational spectrum exhibited replication-strand bias, implicating mtDNA replication as a major mutational process. We evaluated the mtDNA mutation rate (5.0 × 10-8 per base pair) and a turnover frequency of 10-20 per year, which are fundamental components shaping the landscape of mtDNA mosaicism over a lifetime. The expansion of mtDNA-truncating mutations toward homoplasmy was substantially suppressed. Our findings provide comprehensive insights into the origins, dynamics and functional consequences of mtDNA mosaicism in human somatic cells.


Subject(s)
DNA, Mitochondrial , Mosaicism , Mutation , Humans , DNA, Mitochondrial/genetics , Heteroplasmy/genetics , Mutation Rate , Mitochondria/genetics , Genome, Mitochondrial , DNA Replication/genetics , Female , Male
3.
Eur J Cancer ; 208: 114206, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38981315

ABSTRACT

BACKGROUND: Mobocertinib, an EGFR exon 20 insertion (Ex20ins)-specific tyrosine kinase inhibitor has been used for treatment of advanced/metastatic EGFR Ex20ins-mutant non-small cell lung cancer (NSCLC). However, resistance mechanisms to EGFR Ex20ins-specific inhibitors and the efficacy of subsequent amivantamab treatment is unknown. METHODS: To investigate resistance mechanisms, tissue and cfDNA samples were collected before treatment initiation and upon development of resistance from NSCLC patients with EGFR Ex20ins mutations received mobocertinib, poziotinib, and amivantamab treatments. Genetic alterations were analyzed using whole-genome and targeted sequencing, and in vitro resistant cell lines were generated for validation. RESULTS: EGFR amplification (n = 6, including 2 broad copy number gain) and EGFR secondary mutation (n = 3) were observed at the resistance of mobocertinib. One patient had both EGFR secondary mutation and high EGFR focal amplification. In vitro models harboring EGFR alterations were constructed to validate resistance mechanisms and identify overcoming strategies to resistance. Acquired EGFR-dependent alterations were found to mediate resistance to mobocertinib in patients and in vitro models. Furthermore, two of six patients who received sequential amivantamab followed by an EGFR tyrosine kinase inhibitor had MET amplification and showed partial response. CONCLUSIONS: Our study revealed EGFR-dependent and -independent mechanisms of mobocertinib resistance in patients with advanced EGFR Ex20ins-mutant NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm , ErbB Receptors , Exons , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , ErbB Receptors/genetics , ErbB Receptors/antagonists & inhibitors , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mutagenesis, Insertional , Mutation , /therapeutic use
4.
Sci Rep ; 14(1): 11005, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38745021

ABSTRACT

The SUVmax is a measure of FDG uptake and is related with tumor aggressiveness in thyroid cancer, however, its association with molecular pathways is unclear. Here, we investigated the relationship between SUVmax and gene expression profiles in 80 papillary thyroid cancer (PTC) patients. We conducted an analysis of DEGs and enriched pathways in relation to SUVmax and tumor size. SUVmax showed a positive correlation with tumor size and correlated with glucose metabolic process. The genes that indicate thyroid differentiation, such as SLC5A5 and TPO, were negatively correlated with SUVmax. Unsupervised analysis revealed that SUVmax positively correlated with DNA replication(r = 0.29, p = 0.009), pyrimidine metabolism(r = 0.50, p < 0.0001) and purine metabolism (r = 0.42, p = 0.0001). Based on subgroups analysis, we identified that PSG5, TFF3, SOX2, SL5A5, SLC5A7, HOXD10, FER1L6, and IFNA1 genes were found to be significantly associated with tumor aggressiveness. Both high SUVmax PTMC and macro-PTC are enriched in pathways of DNA replication and cell cycle, however, gene sets for purine metabolic pathways are enriched only in high SUVmax macro-PTC but not in high SUVmax PTMC. Our findings demonstrate the molecular characteristics of high SUVmax tumor and metabolism involved in tumor growth in differentiated thyroid cancer.


Subject(s)
Thyroid Cancer, Papillary , Thyroid Neoplasms , Transcriptome , Humans , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/pathology , Thyroid Cancer, Papillary/metabolism , Female , Male , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Middle Aged , Adult , Fluorodeoxyglucose F18 , Gene Expression Regulation, Neoplastic , Aged , Gene Expression Profiling , Tumor Burden/genetics
5.
Cell Death Discov ; 10(1): 222, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719807

ABSTRACT

Neutrophil heterogeneity is involved in autoimmune diseases, sepsis, and several cancers. However, the link between neutrophil heterogeneity and T-cell immunity in thyroid cancer is incompletely understood. We investigated the circulating neutrophil heterogeneity in 3 undifferentiated thyroid cancer (UTC), 14 differentiated thyroid cancer (DTC) (4 Stage IV, 10 Stage I-II), and healthy controls (n = 10) by transcriptomic data and cytometry. Participants with UTC had a significantly higher proportion of immature high-density neutrophils (HDN) and lower proportion of mature HDN in peripheral blood compared to DTC. The proportion of circulating PD-L1+ immature neutrophils were significantly increased in advanced cancer patients. Unsupervised analysis of transcriptomics data from circulating HDN revealed downregulation of innate immune response and T-cell receptor signaling pathway in cancer patients. Moreover, UTC patients revealed the upregulation of glycolytic process and glutamate receptor signaling pathway. Comparative analysis across tumor types and stages revealed the downregulation of various T-cell-related pathways, such as T-cell receptor signaling pathway and T-cell proliferation in advanced cancer patients. Moreover, the proportions of CD8+ and CD4+ T effector memory CD45RA+ (TEMRA) cells from peripheral blood were significantly decreased in UTC patients compared to DTC patients. Finally, we demonstrated that proportions of tumor-infiltrated neutrophils were increased and related with poor prognosis in advanced thyroid cancer using data from our RNA-seq and TCGA (The Cancer Genome Atlas) data. In conclusion, observed prevalence of circulating immature high-density neutrophils and their immunosuppressive features in undifferentiated thyroid cancers underscore the importance of understanding neutrophil dynamics in the context of tumor progression in thyroid cancer.

6.
Nat Commun ; 15(1): 1163, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331894

ABSTRACT

The role of the serine/glycine metabolic pathway (SGP) has recently been demonstrated in tumors; however, the pathological relevance of the SGP in thyroid cancer remains unexplored. Here, we perform metabolomic profiling of 17 tumor-normal pairs; bulk transcriptomics of 263 normal thyroid, 348 papillary, and 21 undifferentiated thyroid cancer samples; and single-cell transcriptomes from 15 cases, showing the impact of mitochondrial one-carbon metabolism in thyroid tumors. High expression of serine hydroxymethyltransferase-2 (SHMT2) and methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) is associated with low thyroid differentiation scores and poor clinical features. A subpopulation of tumor cells with high mitochondrial one-carbon pathway activity is observed in the single-cell dataset. SHMT2 inhibition significantly compromises mitochondrial respiration and decreases cell proliferation and tumor size in vitro and in vivo. Collectively, our results highlight the importance of the mitochondrial one-carbon pathway in undifferentiated thyroid cancer and suggest that SHMT2 is a potent therapeutic target.


Subject(s)
Multiomics , Thyroid Neoplasms , Humans , Glycine Hydroxymethyltransferase/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Metabolic Networks and Pathways/genetics , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism
7.
Cell Genom ; 4(2): 100499, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38359788

ABSTRACT

The comprehensive genomic impact of ionizing radiation (IR), a carcinogen, on healthy somatic cells remains unclear. Using large-scale whole-genome sequencing (WGS) of clones expanded from irradiated murine and human single cells, we revealed that IR induces a characteristic spectrum of short insertions or deletions (indels) and structural variations (SVs), including balanced inversions, translocations, composite SVs (deletion-insertion, deletion-inversion, and deletion-translocation composites), and complex genomic rearrangements (CGRs), including chromoplexy, chromothripsis, and SV by breakage-fusion-bridge cycles. Our findings suggest that 1 Gy IR exposure causes an average of 2.33 mutational events per Gb genome, comprising 2.15 indels, 0.17 SVs, and 0.01 CGRs, despite a high level of inter-cellular stochasticity. The mutational burden was dependent on total irradiation dose, regardless of dose rate or cell type. The findings were further validated in IR-induced secondary cancers and single cells without clonalization. Overall, our study highlights a comprehensive and clear picture of IR effects on normal mammalian genomes.


Subject(s)
Gene Rearrangement , Translocation, Genetic , Humans , Animals , Mice , Mutation , Genomics , Chromosome Inversion , Mammals
8.
Int J Mol Sci ; 24(23)2023 Dec 03.
Article in English | MEDLINE | ID: mdl-38069401

ABSTRACT

The ClC-K channels CLCNKA and CLCNKB are crucial for the transepithelial transport processes required for sufficient urinary concentrations and sensory mechanoelectrical transduction in the cochlea. Loss-of-function alleles in these channels are associated with various clinical phenotypes, ranging from hypokalemic alkalosis to sensorineural hearing loss (SNHL) accompanied by severe renal conditions, i.e., Bartter's syndrome. Using a stepwise genetic approach encompassing whole-genome sequencing (WGS), we identified one family with compound heterozygous variants in the ClC-K channels, specifically a truncating variant in CLCNKA in trans with a contiguous deletion of CLCNKA and CLCNKB. Breakpoint PCR and Sanger sequencing elucidated the breakpoint junctions derived from WGS, and allele-specific droplet digital PCR confirmed one copy loss of the CLCNKA_CLCNKB contiguous deletion. The proband that harbors the CLCNKA_CLCNKB variants is characterized by SNHL without hypokalemic alkalosis and renal anomalies, suggesting a distinct phenotype in the ClC-K channels in whom SNHL predominantly occurs. These results expanded genotypes and phenotypes associated with ClC-K channels, including the disease entities associated with non-syndromic hearing loss. Repeated identification of deletions across various extents of CLCNKA_CLCNKB suggests a mutational hotspot allele, highlighting the need for an in-depth analysis of the CLCNKA_CLCNKB intergenic region, especially in undiagnosed SNHL patients with a single hit in CLCNKA.


Subject(s)
Alkalosis , Bartter Syndrome , Deafness , Hearing Loss, Sensorineural , Humans , Bartter Syndrome/genetics , Chloride Channels/genetics , Genetic Association Studies , Genotype , Hearing Loss, Sensorineural/genetics , Mutation
9.
Chemosphere ; 343: 140198, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37717916

ABSTRACT

Regular water quality monitoring is becoming desirable due to the increase in water pollution caused by both climate change and the generation of industrial chemicals. Unmanned vehicles have emerged as key technologies for remote data acquisition, providing fast and accurate methods for water quality monitoring. However, current research on unmanned vehicles has not systematically examined their features and limitations, which are crucial for identifying future research directions and applications of unmanned vehicle technologies. Therefore, this study extensively reviews the advancements in remote data acquisition and processing using unmanned vehicle technologies for water quality monitoring to provide valuable insights for future research. First, the types of unmanned vehicles and their application ranges for water quality monitoring are summarized. Among the unmanned vehicle technologies, unmanned aerial vehicles are considered primary platforms for water quality monitoring due to their wide data acquisition range and their ability to accommodate diverse sensors and samplers. Also, the types of samplers and sensors mounted on the unmanned vehicles are analyzed based on their characteristics. It is concluded that spectral sensors offer the most cost-effective approach for acquiring real-time water quality data. Furthermore, algorithms that convert image data into water quality data are examined, focusing on data preprocessing, analysis, and validation. The findings reveal a close relationship between the analysis of spectral characteristics of each water quality parameter and the wavelength ranges of red and red-edge. Lastly, future research directions for unmanned vehicle technologies are further suggested based on the summarized technological limitations.

10.
J Nanobiotechnology ; 21(1): 242, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37507708

ABSTRACT

BACKGROUND: Central serous chorioretinopathy (CSC) is the fourth most prevalent retinal disease leading to age-related macular degeneration (AMD) and retinal atrophy. However, CSC's pathogenesis and therapeutic target need to be better understood. RESULTS: We investigated exosomal microRNA in the aqueous humor of CSC patients using next-generation sequencing (NGS) to identify potential biomarkers associated with CSC pathogenesis. Bioinformatic evaluations and NGS were performed on exosomal miRNAs obtained from AH samples of 62 eyes (42 CSC and 20 controls). For subgroup analysis, patients were divided into treatment responders (CSC-R, 17 eyes) and non-responders (CSC-NR, 25 eyes). To validate the functions of miRNA in CECs, primary cultured-human choroidal endothelial cells (hCEC) of the donor eyes were utilized for in vitro assays. NGS detected 376 miRNAs. Our results showed that patients with CSC had 12 significantly upregulated and 17 downregulated miRNAs compared to controls. miR-184 was significantly upregulated in CSC-R and CSC-NR patients compared to controls and higher in CSC-NR than CSC-R. In vitro assays using primary cultured-human choroidal endothelial cells (hCEC) demonstrated that miR-184 suppressed the proliferation and migration of hCECs. STC2 was identified as a strong candidate for the posttranscriptional down-regulated target gene of miR-184. CONCLUSION: Our findings suggest that exosomal miR-184 may serve as a biomarker reflecting the angiostatic capacity of CEC in patients with CSC.


Subject(s)
Central Serous Chorioretinopathy , MicroRNAs , Humans , Aqueous Humor , Biomarkers , Central Serous Chorioretinopathy/diagnosis , Central Serous Chorioretinopathy/genetics , Central Serous Chorioretinopathy/drug therapy , Endothelial Cells , Fluorescein Angiography/methods , MicroRNAs/genetics , MicroRNAs/therapeutic use , Prognosis
11.
Endocrinology ; 164(4)2023 02 11.
Article in English | MEDLINE | ID: mdl-36791033

ABSTRACT

The thyroid gland plays a critical role in the maintenance of whole-body metabolism. However, aging frequently impairs homeostatic maintenance by thyroid hormones due to increased prevalence of subclinical hypothyroidism associated with mitochondrial dysfunction, inflammation, and fibrosis. To understand the specific aging-related changes of endocrine function in thyroid epithelial cells, we performed single-cell RNA sequencing (RNA-seq) of 54 726 cells derived from pathologically normal thyroid tissues from 7 patients who underwent thyroidectomy. Thyroid endocrine epithelial cells were clustered into 5 distinct subpopulations, and a subset of cells was found to be particularly vulnerable with aging, showing functional deterioration associated with the expression of metallothionein (MT) and major histocompatibility complex class II genes. We further validated that increased expression of MT family genes are highly correlated with thyroid gland aging in bulk RNAseq datasets. This study provides evidence that aging induces specific transcriptomic changes across multiple cell populations in the human thyroid gland.


Subject(s)
Aging , Hypothyroidism , Humans , Aging/genetics , Aging/metabolism , Hypothyroidism/genetics , Thyroid Hormones , Single-Cell Analysis
12.
Tissue Eng Regen Med ; 19(4): 809-821, 2022 08.
Article in English | MEDLINE | ID: mdl-35438457

ABSTRACT

BACKGROUND: In humans, after fertilization, the zygote divides into two 2n diploid daughter blastomeres. During this division, DNA is replicated, and the remaining mutually exclusive genetic mutations in the genome of each cell are called post-zygotic variants. Using these somatic mutations, developmental lineages can be reconstructed. How these two blastomeres are contributing to the entire body is not yet identified. This study aims to evaluate the cellular contribution of two blastomeres of 2-cell embryos to the entire body in humans using post-zygotic variants based on whole genome sequencing. METHODS: Tissues from different anatomical areas were obtained from five donated cadavers for use in single-cell clonal expansion and bulk target sequencing. After conducting whole genome sequencing, computational analysis was applied to find the early embryonic mutations of each clone. We developed our in-house bioinformatics pipeline, and filtered variants using strict criteria, composed of mapping quality, base quality scores, depth, soft-clipped reads, and manual inspection, resulting in the construction of embryological phylogenetic cellular trees. RESULTS: Using our in-house pipeline for variant filtering, we could extract accurate true positive variants, and construct the embryological phylogenetic trees for each cadaver. We found that two daughter blastomeres, L1 and L2 (lineage 1 and 2, respectively), derived from the zygote, distribute unequally to the whole body at the clonal level. From bulk target sequencing data, we validated asymmetric contribution by means of the variant allele frequency of L1 and L2. The asymmetric contribution of L1 and L2 varied from person to person. CONCLUSION: We confirmed that there is asymmetric contribution of two daughter blastomeres from the first division of the zygote across the whole human body.


Subject(s)
Blastomeres , Zygote , Human Body , Humans , Phylogeny
13.
J Rheum Dis ; 29(4): 254-260, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-37476427

ABSTRACT

Deficiency of adenosine deaminase 2 (DADA2) is an autoinflammatory disease caused by pathogenic variants of the ADA2 gene and has similar clinical features to polyarteritis nodosa (PAN). We, herein, report a case of DADA2 in Korea that was diagnosed in a patient with childhood-onset PAN. The patient had a truncal ataxia and facial palsy caused by thalamic infarction at 34 months of age. Livedo reticularis with Raynaud phenomenon and abdominal pain with fever were followed. Radiologic examination showed multiple infarctions in brain and kidney. She was diagnosed with PAN using skin biopsy and angiography. She had severe hemorrhagic strokes despite medical treatments. Her disease activity was controlled after adding a tumor necrosis factor-α inhibitor. Molecular analysis revealed compound heterozygous pathogenic variants of ADA2 gene. This is the first case of DADA2 in Korea. Genetic analysis for ADA2 gene should be considered in patients with childhood-onset PAN.

14.
Genome Res ; 32(11-12): 2134-2144, 2022.
Article in English | MEDLINE | ID: mdl-36617634

ABSTRACT

With the increasing number of sequencing projects involving families, quality control tools optimized for family genome sequencing are needed. However, accurately quantifying contamination in a DNA mixture is particularly difficult when genetically related family members are the sources. We developed TrioMix, a maximum likelihood estimation (MLE) framework based on Mendel's law of inheritance, to quantify DNA mixture between family members in genome sequencing data of parent-offspring trios. TrioMix can accurately deconvolute any intrafamilial DNA contamination, including parent-offspring, sibling-sibling, parent-parent, and even multiple familial sources. In addition, TrioMix can be applied to detect genomic abnormalities that deviate from Mendelian inheritance patterns, such as uniparental disomy (UPD) and chimerism. A genome-wide depth and variant allele frequency plot generated by TrioMix facilitates tracing the origin of Mendelian inheritance deviations. We showed that TrioMix could accurately deconvolute genomes in both simulated and real data sets.


Subject(s)
DNA Contamination , Genome , Humans , Chromosome Mapping , Uniparental Disomy , Databases, Genetic
15.
BMC Pediatr ; 21(1): 453, 2021 10 16.
Article in English | MEDLINE | ID: mdl-34654403

ABSTRACT

BACKGROUND: Severe protein C deficiency is a rare and inherited cause of thrombophilia in neonates. Protein C acts as an anticoagulant, and its deficiency results in vascular thrombosis. Herein, we report a case of protein C deficiency with a homozygous pathogenic variant in a term neonate, with good outcomes after proper treatment. CASE PRESENTATION: A four-day-old male newborn was transferred to the Seoul National University Hospital on account of dark red to black skin lesions. He was born full-term with an average birth weight without perinatal problems. There were no abnormal findings in the prenatal tests, including intrauterine sonography. The first skin lesion was observed on his right toes and rapidly progressed to proximal areas, such as the lower legs, left arm, and buttock. Under the impression of thromboembolism or vasculitis, we performed a coagulopathy workup, which revealed a high D-dimer level of 23.05 µg/ml. A skin biopsy showed fibrin clots in most capillaries, and his protein C activity level was below 10%, from which we diagnosed protein C deficiency. On postnatal day 6, he experienced an apnea event with desaturation and an abnormal right pupillary light reflex. Brain computed tomography showed multifocal patchy intracranial hemorrhage and intraventricular hemorrhage with an old ischemic lesion. Ophthalmic examination revealed bilateral retinal traction detachments with retinal folds. Protein C concentrate replacement therapy was added to previous treatments including steroids, prostaglandin E1, and anticoagulation. After replacement therapy, there were no new skin lesions, and the previous lesions recovered with scarring. Although there were no new brain hemorrhagic infarctions, there was ongoing ischemic tissue loss, which required further rehabilitation. Ophthalmic surgical interventions were performed to treat the bilateral retinal traction detachments with retinal folds. Molecular analysis revealed a homozygous pathogenic variant in the PROC gene. CONCLUSION: Severe protein C deficiency can manifest as a fatal coagulopathy in any organ. Early diagnosis and proper treatment, including protein C concentrate replacement, may improve outcomes without serious sequelae.


Subject(s)
Protein C Deficiency , Anticoagulants , Homozygote , Humans , Infant, Newborn , Intracranial Hemorrhages , Male , Protein C/genetics , Protein C Deficiency/complications , Protein C Deficiency/diagnosis , Protein C Deficiency/genetics
16.
Nature ; 597(7876): 393-397, 2021 09.
Article in English | MEDLINE | ID: mdl-34433967

ABSTRACT

Cellular dynamics and fate decision in early human embryogenesis remain largely unknown owing to the challenges of performing studies in human embryos1. Here, we explored whole-genomes of 334 single-cell colonies and targeted deep sequences of 379 bulk tissues obtained from various anatomical locations of seven recently deceased adult human donors. Using somatic mutations as an intrinsic barcode, we reconstructed early cellular phylogenies that demonstrate (1) an endogenous mutational rate that is higher in the first cell division but decreases to approximately one per cell per cell division later in life; (2) universal unequal contribution of early cells to embryo proper, resulting from early cellular bottlenecks that stochastically set aside epiblast cells within the embryo; (3) examples of varying degrees of early clonal imbalances between tissues on the left and right sides of the body, different germ layers and specific anatomical parts and organs; (4) emergence of a few ancestral cells that will substantially contribute to adult cell pools in blood and liver; and (5) presence of mitochondrial DNA heteroplasmy in the fertilized egg. Our approach also provides insights into the age-related mutational processes and loss of sex chromosomes in normal somatic cells. In sum, this study provides a foundation for future studies to complete cellular phylogenies in human embryogenesis.


Subject(s)
Cell Lineage/genetics , Clone Cells/metabolism , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Embryonic Development/genetics , Mutation , DNA, Mitochondrial/genetics , Embryo, Mammalian/embryology , Female , Humans , Male , Mutation Rate
17.
J Thorac Oncol ; 16(11): 1859-1871, 2021 11.
Article in English | MEDLINE | ID: mdl-34242789

ABSTRACT

INTRODUCTION: EGFRT790M mostly exists subclonally and is acquired as the most common mechanism of resistance to EGFR tyrosine kinase inhibitors (TKIs). Nevertheless, because de novo EGFRT790M-mutant NSCLC is rare, little is known on acquired resistance mechanisms to third-generation EGFR TKIs. METHODS: Acquired resistance mechanisms were analyzed using tumor and plasma samples before and after third-generation EGFR TKI treatment in four patients with de novo EGFRT790M-mutant NSCLC. Genetic alterations were analyzed by whole-exome sequencing, targeted sequencing, fluorescence in situ hybridization, and droplet digital PCR. MTORL1433S, confirmed for oncogenicity using the Ba/F3 system, was reproduced in H1975 cell lines using CRISPR/Cas9-RNP. RESULTS: Of seven patients with NSCLC with de novo EGFRT790M/L858R mutation, four (LC1-4) who received third-generation EGFR TKIs acquired resistance after achieving a partial response (median = 27 mo, range: 17-48 mo). Novel MTORL1433S and EGFRC797S/L798I mutations in cis, MET amplification, and EGFRC797S mutation were identified as acquired resistance mechanisms to third-generation EGFR TKIs. The MTORL1433S mutation was oncogenic in Ba/F3 models and revealed resistance to osimertinib through AKT signaling activation in NCI-H1975 cells harboring the MTORL1433S mutation edited by CRISPR/Cas9 (half-maximal inhibitory concentration, 800 ± 67 nM). Osimertinib in combination with mTOR inhibitors abrogated acquired resistance to osimertinib. CONCLUSIONS: Activation of bypass pathways and the EGFRC797S or EGFRC797S/L798I mutation were identified as acquired resistance mechanisms to third-generation EGFR TKIs in patients with NSCLC with de novo EGFRT790M mutation. In addition, MTORL1433S- and EGFRL858R/T790M-mutant NSCLC cells were sensitive to osimertinib plus mTOR inhibitors.


Subject(s)
ErbB Receptors , Lung Neoplasms , Aniline Compounds , Drug Resistance, Neoplasm/genetics , ErbB Receptors/genetics , Humans , In Situ Hybridization, Fluorescence , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
18.
Liver Int ; 41(4): 764-776, 2021 04.
Article in English | MEDLINE | ID: mdl-33548061

ABSTRACT

BACKGROUND: The heterogeneous immune landscapes of intrahepatic cholangiocarcinoma (ICC) remain largely unknown. Here we aimed to investigate the implications of tissue-resident memory (TRM)-related features of tumour-infiltrating CD8+ T cells (CD8+ TILs) from ICC patients. METHODS: From ICC patients, we obtained blood samples and ICC surgical specimens (n = 33). We performed multicolour flow cytometry, multiplexed immunohistochemistry and RNA sequencing. RESULTS: When compared to peripheral CD8+ T cells, the CD8+ TILs included significantly higher proportions of the CD69+ CD103- and CD69+ CD103+ TRM-like subsets (P < .001 for both). Relative to CD69- and CD69+ CD103- cells, the CD69+ CD103+ CD8+ TILs harboured higher levels of T-cell markers representing tumour specificity (ie CD39), proliferation (ie Ki-67) and T-cell activation (ie HLA-DR and CD38) (all P < .001). Moreover, compared to the stroma, the tumour margin and core density each had a significantly higher density of CD103+ CD8+ TILs (P < .001 for both). ICCs with high proportions of CD69+ CD103+ cells displayed higher levels of parameters associated with response to immune checkpoint inhibitors (ICIs)-including number of CD8+ TIL infiltrates (P = .019), PD-L1 expression in the tumour (P = .046) and expression of the T cell-inflamed gene signature (P < .001). ICCs with lower proportions of CD69+ CD103+ CD8+ TILs exhibited significant enrichment of genes related to the Wnt/ß-catenin (P < .001) and TGF-ß pathways (P = .002). CONCLUSION: CD69+ CD103+ TRM-like CD8+ TILs represent prominent tumour-specific immune responses and hold promise as a potential therapeutic target in ICC patients. Differential TRM-related features of ICCs may help develop future immunotherapeutic strategies such as maximizing TRM responses or inhibiting pathways contributing to immune evasion.


Subject(s)
CD8-Positive T-Lymphocytes , Cholangiocarcinoma , Humans , Immunologic Memory , Immunotherapy , Lymphocyte Activation , Lymphocytes, Tumor-Infiltrating
19.
J Immunother Cancer ; 8(2)2020 12.
Article in English | MEDLINE | ID: mdl-33335029

ABSTRACT

BACKGROUND: Responses to immunotherapy vary between different cancer types and sites. Here, we aimed to investigate features of exhaustion and activation in tumor-infiltrating CD8 T cells at both the primary and metastatic sites in epithelial ovarian cancer. METHODS: Tumor tissues and peripheral blood were obtained from 65 patients with ovarian cancer. From these samples, we isolated tumor-infiltrating lymphocytes (TILs) and peripheral blood mononuclear cells. These cells were used for immunophenotype using multicolor flow cytometry, gene expression profile using RNA sequencing and ex vivo functional restoration assays. RESULTS: We found that CD39+ CD8 TILs were enriched with tumor-specific CD8 TILs, and that the activation status of these cells was determined by the differential programmed cell death protein 1 (PD-1) expression level. CD39+ CD8 TILs with high PD-1 expression (PD-1high) exhibited features of highly tumor-reactive and terminally exhausted phenotypes. Notably, PD-1high CD39+ CD8 TILs showed similar characteristics in terms of T-cell exhaustion and activation between the primary and metastatic sites. Among co-stimulatory receptors, 4-1BB was exclusively overexpressed in CD39+ CD8 TILs, especially on PD-1high cells, and 4-1BB-expressing cells displayed immunophenotypes indicating higher degrees of T-cell activation and proliferation, and less exhaustion, compared with cells not expressing 4-1BB. Importantly, 4-1BB agonistic antibodies further enhanced the anti-PD-1-mediated reinvigoration of exhausted CD8 TILs from both primary and metastatic sites. CONCLUSION: Severely exhausted PD-1high CD39+ CD8 TILs displayed a distinctly heterogeneous exhaustion and activation status determined by differential 4-1BB expression levels, providing rationale and evidence for immunotherapies targeting co-stimulatory receptor 4-1BB in ovarian cancers.


Subject(s)
Apyrase/metabolism , Carcinoma, Ovarian Epithelial/genetics , Immune Checkpoint Inhibitors/therapeutic use , Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism , CD8-Positive T-Lymphocytes , Carcinoma, Ovarian Epithelial/pathology , Female , Humans , Immune Checkpoint Inhibitors/pharmacology , Middle Aged , Neoplasm Metastasis , Prospective Studies
20.
Article in English | MEDLINE | ID: mdl-33227952

ABSTRACT

Plasticizers are added to diverse consumer products including children's products. Owing to their potential for endocrine disruption, the use of phthalate plasticizers is restricted in many children's products. In this study, exposure to five phthalate esters (dibutylphthalate, di(2-ethylhexyl) phthalate (DEHP), diethyl phthalate, di-isobutyl phthalate, and diisononyl phthalate (DINP)) and an alternative (di-ethylhexyl adipate) was assessed by the use of children's products based on chemical analysis of 3345 products purchased during 2017 and 2019 in Korea. Plasticizers were found above the detection limits in 387 products, and DEHP and DINP were the two most predominantly detected plasticizers. Deterministic and probabilistic estimation of the margin of exposure at a screening level revealed that the use of children's products might be an important risk factor. However, it is also highly likely that the exposure could be overestimated, because the migration rate was estimated based solely on the content of plasticizers in children's products. Chemical migration is a key process determining the absorption of plasticizers from products; thus, further refinements in experimental determination or model estimation of the migration rate are required.


Subject(s)
Environmental Exposure , Phthalic Acids , Consumer Product Safety , Esters/analysis , Esters/chemistry , Humans , Phthalic Acids/analysis , Phthalic Acids/chemistry , Plasticizers/analysis , Plasticizers/chemistry , Republic of Korea
SELECTION OF CITATIONS
SEARCH DETAIL