Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nutr Res ; 31(11): 836-41, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22118754

ABSTRACT

Consumption of a large amount of dietary fructose induces gastrointestinal intolerance, and glucose has been known as an enhancer of fructose absorption. Erythritol is a nonglycemic sugar alcohol, and it has been suggested that erythritol is absorbed paracellularly. It was hypothesized that paracellular absorption of erythritol could also enhance paracellular absorption of fructose in healthy adults. This is one of the proposed pathways for how additional glucose enhances the absorption of fructose. Thirty-seven nondiabetic, healthy adults participated in a randomized, double-masked, controlled crossover study. After an overnight fast, participants consumed beverages containing either 50 g fructose and 50 g glucose, 50 g fructose and 33.3 g erythritol (an equimolar concentration of fructose), or 50 g fructose alone. Breath hydrogen response was determined for 8 hours postprandially. Gastrointestinal intolerance symptoms and the number and consistency of bowel movements were recorded for 24 hours postprandially. The breath hydrogen area under the curve (AUC) of the fructose and erythritol beverage was 2 times the AUC of the fructose beverage and 8.75 times the AUC of the fructose and glucose beverage (P < .001, respectively). Compared with fructose and glucose beverage and fructose alone, frequency of watery stools increased (P < .05) and gastrointestinal tolerance worsened (P < .05) when participants consumed fructose and erythritol. These data suggest that coingestion of equimolar concentrations of fructose and erythritol increased carbohydrate malabsorption.


Subject(s)
Erythritol/adverse effects , Fructose/adverse effects , Gastrointestinal Diseases/chemically induced , Adult , Beverages , Breath Tests , Cross-Over Studies , Dietary Carbohydrates/administration & dosage , Dietary Carbohydrates/pharmacokinetics , Double-Blind Method , Drug Interactions , Erythritol/administration & dosage , Erythritol/pharmacokinetics , Feces , Female , Flatulence/chemically induced , Fructose/administration & dosage , Fructose/pharmacokinetics , Glucaric Acid/administration & dosage , Humans , Hydrogen/analysis , Intestinal Absorption/drug effects , Malabsorption Syndromes , Male
2.
Exp Biol Med (Maywood) ; 229(7): 657-64, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15229360

ABSTRACT

Sexual dimorphism is observed in the progression to congestive heart failure and, ultimately, in longevity in spontaneously hypertensive heart failure (SHHF) rats. As platelet activation may impact development of cardiovascular diseases, we studied the effects of obesity and sex on platelet polyunsaturated fatty acid (PUFA) profile and its relationship to platelet aggregation in 6-month-old SHHF rats. After a 24-hr fast, blood was obtained for measurement of platelet phospholipid omega-6 (n-6) and omega-3 (n-3) PUFA. Collagen-induced platelet aggregation was measured by whole-blood impedance aggregometry. Obese male (OM) SHHF had significantly more platelet arachidonic acid (AA) and total n-6 PUFA than lean males (LMs), lean females (LFs), or obese females (OFs). Platelet aggregation was enhanced in males compared to females, with OMs by 45% compared to OFs and with LMs by 28% compared to LFs. Though no difference was found between OFs and LFs, platelet aggregation was increased in OMs by 20% compared to LMs. Though not significantly different, lag time to initiate platelet aggregation tended to be shortest in OMs and then, in increasing duration, LMs, LFs, and OFs, suggesting that platelets from male rats were quicker to aggregate than those from females. Platelet aggregation was correlated with platelet AA and total n-6 PUFA content. There was no relationship between n-3 PUFA and platelet aggregation. In SHHF rats, elevated AA and n-6 PUFA levels in platelets are associated with enhanced platelet aggregation. This relationship is potentiated by obesity and male sex.


Subject(s)
Arachidonic Acid/blood , Blood Platelets/metabolism , Heart Failure/physiopathology , Obesity/blood , Animals , Fatty Acids, Unsaturated/blood , Female , Heart Failure/blood , Male , Rats , Rats, Inbred SHR , Sex Characteristics
SELECTION OF CITATIONS
SEARCH DETAIL
...