Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; 8(20): e2100895, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34390224

ABSTRACT

Thermoelectric properties are frequently manipulated by introducing point defects into a matrix. However, these properties often change in unfavorable directions owing to the spontaneous formation of vacancies at high temperatures. Although it is crucial to maintain high thermoelectric performance over a broad temperature range, the suppression of vacancies is challenging since their formation is thermodynamically preferred. In this study, using PbTe as a model system, it is demonstrated that a high thermoelectric dimensionless figure of merit, zT ≈ 2.1 at 723 K, can be achieved by suppressing the vacancy formation via dopant balancing. Hole-killer Te vacancies are suppressed by Ag doping because of the increased electron chemical potential. As a result, the re-dissolution of Na2 Te above 623 K can significantly increase the hole concentration and suppress the drop in the power factor. Furthermore, point defect scattering in material systems significantly reduces lattice thermal conductivity. The synergy between defect and carrier engineering offers a pathway for achieving a high thermoelectric performance by alleviating the power factor drop and can be utilized to enhance thermoelectric properties of thermoelectric materials.

2.
ACS Nano ; 13(4): 3806-3815, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-30735348

ABSTRACT

Considerable efforts have been devoted to enhancing thermoelectric performance, by employing phonon scattering from nanostructural architecture, and material design using phonon-glass and electron-crystal concepts. The nanostructural approach helps to lower thermal conductivity but has limited effect on the power factor. Here, we demonstrate selective charge Anderson localization as a route to maximize the Seebeck coefficient while simultaneously preserving high electrical conductivity and lowering the lattice thermal conductivity. We confirm the viability of interface potential modification in an n-type Bi-doped PbTe/Ag2Te nanocomposite and the resulting enhancement in thermoelectric figure-of-merit ZT. The introduction of random potentials via Ag2Te nanoparticle distribution using extrinsic phase mixing was determined using scanning tunneling spectroscopy measurements. When the Ag2Te undergoes a structural phase transition ( T > 420 K) from monoclinic ß-Ag2Te to cubic α-Ag2Te, the band gap in the α-Ag2Te increases due to the p -d hybridization. This results in a decrease in the potential barrier height, which gives rise to partial delocalization of the electrons, while wave packets of the holes are still in a localized state. Using this strategic approach, we achieved an exceptionally high thermoelectric figure-of-merit in n-type PbTe materials, a ZT greater than 2.0, suitable for waste heat power generation.

3.
Front Chem ; 6: 436, 2018.
Article in English | MEDLINE | ID: mdl-30320067

ABSTRACT

Lead telluride (PbTe) nanofibers were fabricated by galvanic displacement of electrospun cobalt nanofibers where their composition and morphology were altered by adjusting the electrolyte composition and diameter of sacrificial cobalt nanofibers. By employing Co instead of Ni as the sacrificial material, residue-free PbTe nanofibers were synthesized. The Pb content of the PbTe nanofibers was slightly affected by the Pb2+ concentration in the electrolyte, while the average outer diameter increased with Pb2+ concentration. The surface morphology of PbTe nanofibers was strongly dependent on the diameter of sacrificial nanofibers where it altered from smooth to rough surface as the Pb2+ concentration increased. Some of thermoelectric properties [i.e., thermopower (S) and electrical conductivity(σ)] were systematically measured as a function of temperature. Energy barrier height (Eb) was found to be one of the key factors affecting the thermoelectric properties-that is, higher energy barrier heights increased the Seebeck coefficient, but lowered the electrical conductivity.

4.
Nanoscale Res Lett ; 13(1): 200, 2018 Jul 06.
Article in English | MEDLINE | ID: mdl-29980879

ABSTRACT

ᅟ: We report on the successful preparation of Bi-doped n-type polycrystalline SnSe by hot-press method. We observed anisotropic transport properties due to the (h00) preferred orientation of grains along the pressing direction. The electrical conductivity perpendicular to the pressing direction is higher than that parallel to the pressing direction, 12.85 and 6.46 S cm-1 at 773 K for SnSe:Bi 8% sample, respectively, while thermal conductivity perpendicular to the pressing direction is higher than that parallel to the pressing direction, 0.81 and 0.60 W m-1 K-1 at 773 K for SnSe:Bi 8% sample, respectively. We observed a bipolar conducting mechanism in our samples leading to n- to p-type transition, whose transition temperature increases with Bi concentration. Our work addressed a possibility to dope polycrystalline SnSe by a hot-pressing process, which may be applied to module applications. HIGHLIGHTS: 1. We have successfully achieved Bi-doped n-type polycrystalline SnSe by the hot-press method. 2. We observed anisotropic transport properties due to the [h00] preferred orientation of grains along pressing direction. 3. We observed a bipolar conducting mechanism in our samples leading to n- to p-type transition.

5.
Sci Rep ; 7(1): 4496, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28674398

ABSTRACT

We report the enhanced thermoelectric properties of Ce-doped AgSbTe2 (AgSb1-xCexTe2) compounds. As the Ce contents increased, the proportion of heterophase Ag2Te in the AgSbTe2 gradually decreased, along with the size of the crystals. The electrical resistivity and Seebeck coefficient were dramatically affected by Ce doping and the lattice thermal conductivity was reduced. The presence of nanostructured Ag2Te heterophases resulted in a greatly enhanced dimensionless figure of merit, ZT of 1.5 at 673 K. These findings highlight the importance of the heterophase and doping control, which determines both electrical and thermal properties.

6.
J Am Chem Soc ; 138(43): 14458-14468, 2016 11 02.
Article in English | MEDLINE | ID: mdl-27763764

ABSTRACT

Thermoelectrics directly converts waste heat into electricity and is considered a promising means of sustainable energy generation. While most of the recent advances in the enhancement of the thermoelectric figure of merit (ZT) resulted from a decrease in lattice thermal conductivity by nanostructuring, there have been very few attempts to enhance electrical transport properties, i.e., the power factor. Here we use nanochemistry to stabilize bulk bismuth telluride (Bi2Te3) that violates phase equilibrium, namely, phase-pure n-type K0.06Bi2Te3.18. Incorporated potassium and tellurium in Bi2Te3 far exceed their solubility limit, inducing simultaneous increase in the electrical conductivity and the Seebeck coefficient along with decrease in the thermal conductivity. Consequently, a high power factor of ∼43 µW cm-1 K-2 and a high ZT > 1.1 at 323 K are achieved. Our current synthetic method can be used to produce a new family of materials with novel physical and chemical characteristics for various applications.

7.
ACS Appl Mater Interfaces ; 8(11): 7003-12, 2016 Mar 23.
Article in English | MEDLINE | ID: mdl-26915474

ABSTRACT

Solid solutions of magnesium silicide and magnesium stannide were recently reported to have high thermoelectric figure-of-merits (ZT) due to remarkably low thermal conductivity, which was conjectured to come from phonon scattering by segregated Mg2Si and Mg2Sn phases without detailed study. However, it is essential to identify the main cause for further improving ZT as well as estimating its upper bound. Here we synthesized Mg2(Si,Sn) with nanoparticles and segregated phases, and theoretically analyzed and estimated the thermal conductivity upon segregated fraction and extraneous nanoparticle addition by fitting experimentally obtained thermal conductivity, electrical conductivity, and thermopower. In opposition to the previous speculation that segregated phases intensify phonon scattering, we found that lattice thermal conductivity was increased by the phase segregation, which is difficult to avoid due to the miscibility gap. We selected extraneous TiO2 nanoparticles dissimilar to the host materials as additives to reduce lattice thermal conductivity. Our experimental results showed the maximum ZT was improved from ∼0.9 without the nanoparticles to ∼1.1 with 2 and 5 vol % TiO2 nanoparticles at 550 °C. According to our theoretical analysis, this ZT increase by the nanoparticle addition mainly comes from suppressed lattice thermal conductivity in addition to lower bipolar thermal conductivity at high temperatures. The upper bound of ZT was predicted to be ∼1.8 for the ideal case of no phase segregation and addition of 5 vol % TiO2 nanoparticles. We believe this study offers a new direction toward improved thermoelectric performance of Mg2(Si,Sn).

8.
Dalton Trans ; 44(7): 3185-9, 2015 Feb 21.
Article in English | MEDLINE | ID: mdl-25579326

ABSTRACT

We investigated the thermoelectric properties of Cl-doped polycrystalline compounds In4Pb0.01Sn0.03Se2.9Clx (x = 0.02, 0.04, and 0.06). X-ray diffraction measurement shows a gradual change in lattice volume for x ≤ 0.04 without any impurity phases indicating a systemic change in Cl doping. The Cl doping in the compounds has the effect of increasing carrier concentration and the effective mass of carriers, resulting in an increase in power factor at a high temperature (∼700 K). Because of the increased electrical conductivity at a high temperature, the dimensionless thermoelectric figure of merit ZT reaches 1.25 at 723 K for the x = 0.04 Cl-doped compound, which is a relatively high value for n-type polycrystalline materials.

9.
Nanoscale ; 7(1): 365, 2015 Jan 07.
Article in English | MEDLINE | ID: mdl-25424730

ABSTRACT

Correction for 'Three-dimensional hierarchical Te-Si nanostructures' by Jae-Hong Lim et al., Nanoscale, 2014, 6, 11697-11702.

10.
J Nanosci Nanotechnol ; 15(10): 8299-304, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26726507

ABSTRACT

Bi2Te3 thermoelectric thin films were deposited on the flexible polyimide substrates by RF magnetron co-sputtering of a Bi and a Te targets. The influence of the substrate temperature and RF power on the microstructure, chemical composition, and the thermoelectric properties of the sputtered films was investigated by using scanning electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, and in-plane resistivity/Seebeck coefficient measurement. It was shown that the thermoelectric properties of the films depend sensitively on the Bi/Te chemical composition ratio and the substrate temperature, and the layered structure was clearly observed from the cross section of the (00L)-oriented, nearly stoichiometric Bi2Te3 films when the substrate temperature is higher than 250 °C. As-deposited Bi2Te3 films deposited at 300 °C show the highest power factor of 0.97 mW/K(2)m and the Seebeck coefficient of -193 µV/K at 32 °C, which also have (00L) preferred orientation and the layered structure. The durability of the Bi2Te3 films on polyimide against repeated bending was also tested by monitoring the film resistance, and it was concluded that the Bi2Te3 films are applicable reliably on the curved surfaces with the radius of curvature larger than 5 mm.

11.
Nanoscale ; 6(20): 11697-702, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-24988904

ABSTRACT

Three-dimensional hybrid nanostructures (i.e., Te "nanobranches" on a Si "nanotrunk" or Te "nanoleaves" on a Si "nanotrunk") were synthesized by combining the gold-assisted chemical etching of Si to form Si "nanotrunks" and the galvanic displacement of Si to form Te "nanobranches" or "nanoleaves." By adjusting the composition of the electrolyte used for the galvanic displacement reaction, the shape of the Te nanostructures could be changed from nanoleaves to nanobranches. The Si nanotrunks with Te nanobranches showed stronger luminescent emission in the visible region, with their Raman spectrum having a higher wave number, owing to their grain size being larger. This suggested that the optical and photoelectrochemical properties of Te-Si hybrid nanostructures depend on their shape and size. Using this approach, it should be possible to fabricate various hierarchical nanostructures for use in photoelectronic and photoelectrochemical devices.

12.
Sci Rep ; 3: 2123, 2013.
Article in English | MEDLINE | ID: mdl-23820973

ABSTRACT

The optimal hybridization of photovoltaic (PV) and thermoelectric (TE) devices has long been considered ideal for the efficient harnessing solar energy. Our hybrid approach uses full spectrum solar energy via lossless coupling between PV and TE devices while collecting waste energy from thermalization and transmission losses from PV devices. Achieving lossless coupling makes the power output from the hybrid device equal to the sum of the maximum power outputs produced separately from individual PV and TE devices. TE devices need to have low internal resistances enough to convey photo-generated currents without sacrificing the PV fill factor. Concomitantly, a large number of p-n legs are preferred to drive a high Seebeck voltage in TE. Our simple method of attaching a TE device to a PV device has greatly improved the conversion efficiency and power output of the PV device (~30% at a 15°C temperature gradient across a TE device).

SELECTION OF CITATIONS
SEARCH DETAIL
...