Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 12(1): 532-536, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33377386

ABSTRACT

The halide double perovskite Cs2AgBiBr6 has emerged as a promising nontoxic alternative to the lead halide perovskites APbX3 (A = organic cation or Cs; X = I or Br). Here, we perform high-pressure synchrotron X-ray total scattering on Cs2AgBiBr6 and discover local disorder that is hidden from conventional Bragg analysis. While our powder diffraction data show that the average structure remains cubic up to 2.1 GPa, analysis of the X-ray pair distribution function reveals that the local structure is better described by a monoclinic space group, with significant distortion within the Ag-Br and Bi-Br octahedra and off-centering of the Cs atoms. By tracking the distribution of interatomic Cs-Br distances, we find that the local disorder is enhanced upon compression, and we corroborate these results with molecular dynamics simulations. The observed local disorder affords new understanding of this promising material and potentially offers a new parameter to tune in halide perovskite lattices.

2.
Sci Adv ; 6(8): eaay9405, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32128417

ABSTRACT

Carbon-based nanomaterials have exceptional properties that make them attractive for a variety of technological applications. Here, we report on the use of diamondoids (diamond-like, saturated hydrocarbons) as promising precursors for laser-induced high-pressure, high-temperature diamond synthesis. The lowest pressure and temperature (P-T) conditions that yielded diamond were 12 GPa (at ~2000 K) and 900 K (at ~20 GPa), respectively. This represents a substantially reduced transformation barrier compared with diamond synthesis from conventional (hydro)carbon allotropes, owing to the similarities in the structure and full sp3 hybridization of diamondoids and bulk diamond. At 20 GPa, diamondoid-to-diamond conversion occurs rapidly within <19 µs. Molecular dynamics simulations indicate that once dehydrogenated, the remaining diamondoid carbon cages reconstruct themselves into diamond-like structures at high P-T. This study is the first successful mapping of the P-T conditions and onset timing of the diamondoid-to-diamond conversion and elucidates the physical and chemical factors that facilitate diamond synthesis.

3.
Phys Chem Chem Phys ; 20(9): 6187-6197, 2018 Feb 28.
Article in English | MEDLINE | ID: mdl-29431823

ABSTRACT

The effects of swift heavy ion irradiation-induced disordering on the behavior of lanthanide zirconate compounds (Ln2Zr2O7 where Ln = Sm, Er, or Nd) at high pressures are investigated. After irradiation with 2.2 GeV 197Au ions, the initial ordered pyrochlore structure (Fd3[combining macron]m) transformed to a defect-fluorite structure (Fm3[combining macron]m) in Sm2Zr2O7 and Nd2Zr2O7. For irradiated Er2Zr2O7, which has a defect-fluorite structure, ion irradiation induces local disordering by introducing Frenkel defects despite retention of the initial structure. When subjected to high pressures (>29 GPa) in the absence of irradiation, all of these compounds transform to a cotunnite-like (Pnma) phase, followed by sluggish amorphization with further compression. However, if these compounds are irradiated prior to compression, the high pressure cotunnite-like phase is not formed. Rather, they transform directly from their post-irradiation defect-fluorite structure to an amorphous structure upon compression (>25 GPa). Defects and disordering induced by swift heavy ion irradiation alter the transformation pathways by raising the energetic barriers for the transformation to the high pressure cotunnite-like phase, rendering it inaccessible. As a result, the high pressure stability field of the amorphous phase is expanded to lower pressures when irradiation is coupled with compression. The responses of materials in the lanthanide zirconate system to irradiation and compression, both individually and in tandem, are strongly influenced by the specific lanthanide composition, which governs the defect energetics at extreme conditions.

4.
Inorg Chem ; 57(4): 2269-2277, 2018 Feb 19.
Article in English | MEDLINE | ID: mdl-29420026

ABSTRACT

The structural evolution of lanthanide A2TiO5 (A = Dy, Gd, Yb, Er) at high pressure is investigated using synchrotron X-ray diffraction. The effects of A-site cation size and of the initial structure are systematically examined by varying the composition of the isostructural lanthanide titanates and the structure of dysprosium titanate polymorphs (orthorhombic, hexagonal, and cubic), respectively. All samples undergo irreversible high-pressure phase transformations, but with different onset pressures depending on the initial structure. While each individual phase exhibits different phase transformation histories, all samples commonly experience a sluggish transformation to a defect cotunnite-like (Pnma) phase for a certain pressure range. Orthorhombic Dy2TiO5 and Gd2TiO5 form P21am at pressures below 9 GPa and Pnma above 13 GPa. Pyrochlore-type Dy2TiO5 and Er2TiO5 as well as defect-fluorite-type Yb2TiO5 form Pnma at ∼21 GPa, followed by Im3̅m. Hexagonal Dy2TiO5 forms Pnma directly, although a small amount of remnants of hexagonal Dy2TiO5 is observed even at the highest pressure (∼55 GPa) reached, indicating kinetic limitations in the hexagonal Dy2TiO5 phase transformations at high pressure. Decompression of these materials leads to different metastable phases. Most interestingly, a high-pressure cubic X-type phase (Im3̅m) is confirmed using high-resolution transmission electron microscopy on recovered pyrochlore-type Er2TiO5. The kinetic constraints on this metastable phase yield a mixture of both the X-type phase and amorphous domains upon pressure release. This is the first observation of an X-type phase for an A2BO5 composition at high pressure.

5.
Sci Rep ; 7(1): 2236, 2017 05 22.
Article in English | MEDLINE | ID: mdl-28533513

ABSTRACT

Strain engineering is a promising method for next-generation materials processing techniques. Here, we use mechanical milling and annealing followed by compression in diamond anvil cell to tailor the intrinsic and extrinsic strain in pyrochlore, Dy2Ti2O7 and Dy2Zr2O7. Raman spectroscopy, X-ray pair distribution function analysis, and X-ray diffraction were used to characterize atomic order over short-, medium-, and long-range spatial scales, respectively, under ambient conditions. Raman spectroscopy and X-ray diffraction were further employed to interrogate the material in situ at high pressure. High-pressure behavior is found to depend on the species and concentration of defects in the sample at ambient conditions. Overall, we show that defects can be engineered to lower the phase transformation onset pressure by ~50% in the ordered pyrochlore Dy2Ti2O7, and lower the phase transformation completion pressure by ~20% in the disordered pyrochlore Dy2Zr2O7. These improvements are achieved without significantly sacrificing mechanical integrity, as characterized by bulk modulus.

6.
Nat Commun ; 8: 15634, 2017 05 25.
Article in English | MEDLINE | ID: mdl-28541277

ABSTRACT

High-entropy alloys, near-equiatomic solid solutions of five or more elements, represent a new strategy for the design of materials with properties superior to those of conventional alloys. However, their phase space remains constrained, with transition metal high-entropy alloys exhibiting only face- or body-centered cubic structures. Here, we report the high-pressure synthesis of a hexagonal close-packed phase of the prototypical high-entropy alloy CrMnFeCoNi. This martensitic transformation begins at 14 GPa and is attributed to suppression of the local magnetic moments, destabilizing the initial fcc structure. Similar to fcc-to-hcp transformations in Al and the noble gases, the transformation is sluggish, occurring over a range of >40 GPa. However, the behaviour of CrMnFeCoNi is unique in that the hcp phase is retained following decompression to ambient pressure, yielding metastable fcc-hcp mixtures. This demonstrates a means of tuning the structures and properties of high-entropy alloys in a manner not achievable by conventional processing techniques.

SELECTION OF CITATIONS
SEARCH DETAIL
...