Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Biofabrication ; 16(3)2024 May 28.
Article in English | MEDLINE | ID: mdl-38749417

ABSTRACT

Accurate simulation of different cell type interactions is crucial for physiological and precisein vitrodrug testing. Human tissue-resident macrophages are critical for modulating disease conditions and drug-induced injuries in various tissues; however, their limited availability has hindered their use inin vitromodeling. Therefore, this study aimed to create macrophage-containing organoid co-culture models by directly incorporating human-induced pluripotent stem cell (hiPSC)-derived pre-macrophages into organoid and scaffold cell models. The fully differentiated cells in these organoids exhibited functional characteristics of tissue-resident macrophages with enriched pan-macrophage markers and the potential for M1/M2 subtype specialization upon cytokine stimulation. In a hepatic organoid model, the integrated macrophages replicated typical intrinsic properties, including cytokine release, polarization, and phagocytosis, and the co-culture model was more responsive to drug-induced liver injury than a macrophage-free model. Furthermore, alveolar organoid models containing these hiPSC-derived macrophages also showed increased drug and chemical sensitivity to pulmonary toxicants. Moreover, 3D adipocyte scaffold models incorporating macrophages effectively simulated in vivo insulin resistance observed in adipose tissue and showed improved insulin sensitivity on exposure to anti-diabetic drugs. Overall, the findings demonstrated that incorporating hiPSC-derived macrophages into organoid culture models resulted in more physiological and sensitivein vitrodrug evaluation and screening systems.


Subject(s)
Coculture Techniques , Induced Pluripotent Stem Cells , Macrophages , Organoids , Organoids/cytology , Organoids/drug effects , Organoids/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Humans , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Cell Differentiation/drug effects , Liver/cytology , Liver/drug effects , Models, Biological , Animals
2.
Tissue Eng Regen Med ; 21(1): 159-169, 2024 01.
Article in English | MEDLINE | ID: mdl-38153672

ABSTRACT

BACKGROUND: The mammalian target of rapamycin (mTOR) signaling is critical for the maintenance and differentiation of neurogenesis, and conceivably for many other brain developmental processes. However, in vivo studies of mTOR functions in the brain are often hampered due to the essential role of the associated signaling in brain development. METHODS: We monitored the long- and short-term effects of mTOR signaling regulation on cerebral organoids growth, differentiation and function using an mTOR inhibitor (everolimus) and an mTOR activator (MHY1485). RESULTS: Short-term treatment with MHY1485 induced faster organoid growth and differentiation, while long-term treatment induced the maturation of cerebral organoids. CONCLUSION: These data suggest that the optimal activity of mTOR is crucial in maintaining normal brain development, and its role is not confined to the early neurogenic phase of brain development.


Subject(s)
Everolimus , Sirolimus , Organoids/metabolism , Signal Transduction , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism , Brain/growth & development
3.
ACS Chem Neurosci ; 14(20): 3761-3771, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37796021

ABSTRACT

In the human brain, neurophysiological activity is modulated by the movement of neurotransmitters and neurosteroids. To date, the similarity between cerebral organoids and actual human brains has been evaluated using comprehensive multiomics approaches. However, a systematic analysis of both neurotransmitters and neurosteroids from cerebral organoids has not yet been reported. Here, we performed quantitative and qualitative assessments of neurotransmitters and neurosteroids over the course of cerebral organoid differentiation. Our multiomics approaches revealed that the expression levels of neurotransmitter-related proteins and RNA, including neurosteroids, increase as cerebral organoids mature. We also found that the electrophysiological activity of human cerebral organoids increases in tandem with the expression levels of both neurotransmitters and neurosteroids. Our study demonstrates that the expression levels of neurotransmitters and neurosteroids can serve as key factors in evaluating the maturity and functionality of human cerebral organoids.


Subject(s)
Neurosteroids , Humans , Neurosteroids/metabolism , Neurotransmitter Agents/pharmacology , Neurotransmitter Agents/metabolism , Brain/metabolism , Organoids , Cell Differentiation
4.
Nat Commun ; 14(1): 3070, 2023 May 27.
Article in English | MEDLINE | ID: mdl-37244897

ABSTRACT

Multi-terminal memristor and memtransistor (MT-MEMs) has successfully performed complex functions of heterosynaptic plasticity in synapse. However, theses MT-MEMs lack the ability to emulate membrane potential of neuron in multiple neuronal connections. Here, we demonstrate multi-neuron connection using a multi-terminal floating-gate memristor (MT-FGMEM). The variable Fermi level (EF) in graphene allows charging and discharging of MT-FGMEM using horizontally distant multiple electrodes. Our MT-FGMEM demonstrates high on/off ratio over 105 at 1000 s retention about ~10,000 times higher than other MT-MEMs. The linear behavior between current (ID) and floating gate potential (VFG) in triode region of MT-FGMEM allows for accurate spike integration at the neuron membrane. The MT-FGMEM fully mimics the temporal and spatial summation of multi-neuron connections based on leaky-integrate-and-fire (LIF) functionality. Our artificial neuron (150 pJ) significantly reduces the energy consumption by 100,000 times compared to conventional neurons based on silicon integrated circuits (11.7 µJ). By integrating neurons and synapses using MT-FGMEMs, a spiking neurosynaptic training and classification of directional lines functioned in visual area one (V1) is successfully emulated based on neuron's LIF and synapse's spike-timing-dependent plasticity (STDP) functions. Simulation of unsupervised learning based on our artificial neuron and synapse achieves a learning accuracy of 83.08% on the unlabeled MNIST handwritten dataset.

5.
RSC Adv ; 13(5): 2833-2840, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36756445

ABSTRACT

Environmental pollution, including the annual resurgence of particulate matter derived from road dust, is a serious issue worldwide. Typically, the size of road dust is less than 10 µm; thus, road dust can penetrate into human organs, including the brain, through inhalation and intake by mouth. Therefore, the toxicity of road dust has been intensively studied in vitro and in vivo. However, in vitro systems, including 2D cell cultures, cannot mimic complex human organs, and there are several discrepancies between in vivo and human systems. Here, we used human colon cells and organoids to evaluate the cytotoxicity of particulate matter derived from road dust. The toxicity of road dust collected in industrialized and high traffic areas and NIST urban particulate matter reference samples were evaluated in 2D and 3D human colon cells as well as colon organoids and their characteristics were carefully examined. Data suggest that the size and elemental compositions of road dust can correlate with colon organoid toxicity, and thus, a more careful assessment of the size and elemental compositions of road dust should be conducted to predict its effect on human health.

6.
Tissue Eng Regen Med ; 20(1): 49-58, 2023 02.
Article in English | MEDLINE | ID: mdl-36374371

ABSTRACT

BACKGROUND: Microplastics (MPs) are small fragments from any type of plastic formed from various sources, including plastic waste and microfibers from clothing. MPs degrades slowly, resulting in a high probability of human inhalation, ingestion and accumulation in bodies and tissues. As its impact on humans is a prolonged event, the evaluation of its toxicity and influence on human health are critical. In particular, MPs can enter the human digestive system through food and beverage consumption, and its effect on the human colon needs to be carefully examined. METHODS: We monitored the influence of small MPs (50 and 100 nm) on human colon cells, human colon organoids and also examined their toxicity and changes in gene expression in vivo in a mouse model. RESULTS: The data suggested that 5 mg/mL concentrations of 50 and 100 nm MPs induced a > 20% decrease in colon organoid viability and an increase in the expression of inflammatory-, apoptosis- and immunity-related genes. In addition, in vivo data suggested that 50 nm MPs accumulate in various mouse organs, including the colon, liver, pancreas and testicles after 7 d of exposure. CONCLUSION: Taken together, our data suggest that smaller MPs can induce more toxic effects in the human colon and that human colon organoids have the potential to be used as a predictive tool for colon toxicity.


Subject(s)
Microplastics , Plastics , Humans , Mice , Animals , Microplastics/toxicity , Plastics/toxicity , Colon , Apoptosis , Organoids
7.
Article in English | MEDLINE | ID: mdl-35990844

ABSTRACT

The present study aimed to evaluate the antiobesity potential and synergistic effects of ALM16, a mixture of Astragalus membranaceus (AM) and Lithospermum erythrorhizon (LE) extracts, in HFD-induced obese mice. C57BL/6 mice were fed a normal diet (ND), high-fat diet (HFD), HFD + AM, HFD + LE or HFD + ALM16 (50, 100, and 200 mg/kg) daily for 5 weeks. Compared to the ND group, HFD-fed mice showed significant increases in body weight, food efficiency ratio, weights of white adipose tissues, adipocytes size, liver weight, and hepatic steatosis grade. However, ALM16 significantly reduced those increases induced by HFD. Moreover, as compared to the HFD group, the ALM16 group significantly ameliorated serum levels of lipid profiles (TG, TC, HDL, and LDL), adipokines (leptin and adiponectin), and liver damage markers (AST and ALT levels). Notably, ALM16 was more effective than AM or LE alone and had a similar or more potent effect than Garcinia cambogia extracts, as a positive control, at the same dose. These results demonstrate that ALM16 synergistically exerts anti-obesity effects based on complementary interactions between each component. Also, metabolic profiling between each extract and the ALM16 was confirmed by UPLC-QTOF/MS, and the difference was confirmed by relative quantification.

8.
J Pharmacol Sci ; 148(4): 377-386, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35300813

ABSTRACT

Metabolic syndrome is increasingly common, and closely related with overweight or obesity. In the obese state, macrophages infiltrate to the adipose tissue (AT), resulting in chronic inflammation and insulin resistance in the AT cells. Recently, attention has been paid to the role of AT macrophages in metabolic disorders should be applied to the initial drug screening step, but it was difficult to mimic the inflammatory adipocytes using the traditional 2-dimensional (2D) culture. In this study, we developed the 3-dimensional (3D) culture system to overcome this limitation. After adipogenic differentiation, lipid droplets were highly accumulated in cells, and differentiation of preadipocytes was not declined by macrophage co-culture. However, only co-cultured cells expressed the insulin resistance features. Compare to mono-cultured adipocytes, co-cultured adipocytes showed reduced glucose uptake and GLUT4 did not translocated to cell membrane even though treatment of high concentration of insulin. Using 3D co-culture model, we develop a microwell-scale drug screening protocol to test anti-obesity effect. 3D cultured cells reacted more sensitive to drugs, and PPARγ antagonist GW9662 (10, 20 µM) repressed adipogenic differentiation in a concentration-dependent manner in 3D co-cultured cells.


Subject(s)
Metabolic Syndrome , Adipocytes , Adipogenesis , Drug Evaluation, Preclinical , Humans , Metabolic Syndrome/drug therapy , Metabolic Syndrome/etiology , Metabolic Syndrome/metabolism , Obesity/drug therapy
9.
Micromachines (Basel) ; 12(9)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34577662

ABSTRACT

This study is based on the principle that superparamagnetic iron oxide nanoparticles (Fe3O4) can be used to target a specific area given that their magnetic properties emerge when an external magnetic field is applied. Cerium oxide (CeO2), which causes oxidative stress by generating reactive oxygen species (ROS) in the environment of tumor cells, was synthesized on the surface of superparamagnetic iron oxide nanoparticles to produce nanoparticles that selectively kill cancer cells. In addition, hyaluronic acid (HA) was coated on the cerium's surface to target CD44-overexpressing tumor cells, and natZr was chelated on the Fe3O4@CeO2 surface to show the usefulness of labeling the radioisotope 89Zr (T1/2 = 3.3 d). The synthesis of Fe3O4@CeO2 was confirmed by Fourier Transform-Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD) and Field Emission-Transmission Electron Microscope (FE-TEM). The coating of HA was confirmed by FT-IR, X-ray Photoelectron. Spectroscopy (XPS), FE-TEM, Energy-Dispersive X-ray Spectroscopy (EDS) and Thermogravimetric Analysis (TGA)/Differential Scanning Calorimetry (DSC). The sizes of the prepared nanoparticles were confirmed through FE-TEM and Field Emission-Scanning Electron (FE-SEM) (sizes of 15 to 30 nm), and it was confirmed that natZr was introduced onto the surface of the nanoparticles using EDS. The particle size of the dispersed material was limited through Dynamic Light Scattering (DLS) to about 148 nm in aqueous solution, which was suitable for the (enhanced permeation and retention) EPR effect. It was confirmed that the HA-coated nanoparticles have good dispersibility. Finally, a cytotoxicity evaluation confirmed the ability of CeO2 to generate ROS and target the delivery of HA. In conclusion, Fe3O4@CeO2 can effectively inhibit cancer cells through the activity of cerium oxide in the body when synthesized in nano-sized superparamagnetic coral iron that has magnetic properties. Subsequently, by labeling the radioactive isotope 89Zr, it is possible to create a theranostic drug delivery system that can be used for cancer diagnosis.

10.
Materials (Basel) ; 14(12)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34207994

ABSTRACT

This study evaluated the in vivo behavior and accumulation of silica particles in the form of wires, which were actively studied as drug carriers along with spheres, using positron emission tomography (PET). Wire-shaped silicon dioxide (SiO2) was synthesized at micro-size, using anodic aluminum oxide (AAO), a template, and folic acid (FA), which specifically binds folate receptors (FR) which are overexpressed in many cancers, and which was bound to the wire's surface to confirm its possible use as a cancer diagnostic agent. In addition, for evaluation using PET, the positron-emitting nuclide 89Zr (t1/2 = 3.3 days) was directly bonded to the hydroxyl group (-OH) on the particle surface. The diameter and shape of the synthesized silica microwires (SMWs) were confirmed using SEM and TEM, the chemical bonding of FA was confirmed through FT-IR and NMR, and the labeling of 89Zr was measured by means of radio-thin-layer chromatography (TLC) measurement. Folic acid-conjugated SMWs (FA-SMWs) were found to have a low receptor-mediated uptake in cell internalization evaluation, but in PET studies, FA-SMWs stayed longer at the tumor site. In conclusion, we successfully synthesized a homogeneous silica microwire for drug delivery, we confirmed that the FA-conjugated sample remains at the tumor site for a relatively longer time, and we have reported the characteristic in vivo behavior of 89Zr-FA-SMWs.

11.
J Foot Ankle Surg ; 60(3): 541-547, 2021.
Article in English | MEDLINE | ID: mdl-33549425

ABSTRACT

One reported complication of the arthroscopic modified Broström operation is pain caused by the suture anchoring knot. We hypothesized that a knotless technique could reduce such pain. Therefore, in this study we evaluated the clinical and radiological outcomes after knotless all-inside arthroscopic modified Broström operation for lateral ankle instability. From July 2017 to November 2017, 28 patients were treated. Clinical and radiological features were evaluated preoperatively and 3, 6, and 12 months postoperatively using the American Orthopaedic Foot & Ankle Society ankle-hindfoot scale score, visual analogue scale score for pain, anterior talar drawer test, and talar tilt angle. The mean age of the 28 patients (14 men, 14 women) was 41.71 ± 17.19 years. Three (10.7%) complications, but no knot-associated pain, occurred. The clinical and radiological outcomes were significantly improved 12 months postoperatively compared with preoperative outcomes (all p < .05). Knotless all-inside arthroscopic modified Broström operation for lateral ankle instability avoided knot-associated pain and improved not only patient satisfaction but also clinical and radiological outcomes.


Subject(s)
Joint Instability , Lateral Ligament, Ankle , Adult , Ankle , Ankle Joint/diagnostic imaging , Ankle Joint/surgery , Arthroscopy , Female , Humans , Joint Instability/diagnostic imaging , Joint Instability/surgery , Male , Middle Aged , Young Adult
12.
Molecules ; 25(16)2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32784677

ABSTRACT

We conducted systemic assessments on the toxicity of silicon dioxide (SiO2) and titanium dioxide (TiO2) nanoparticles using different forms of normal colon cells (CCD-18Co), in vivo and in human colon organoids. The in vivo acute oral toxicity data showed that the LD50 values are greater than 2000 mg/kg for both the SiO2 and TiO2 nanoparticles; however, the SiO2 and TiO2 nanoparticles induced cytotoxicity in two-dimensional CCD-18Co cells and three-dimensional CCD-18Co spheroids and human colon organoids, with IC50 values of 0.6, 0.8 and 0.3 mM for SiO2 and 2.5, 1.1 and 12.5 mM for TiO2 nanoparticles, respectively. The data suggest that, when SiO2 and TiO2 are in nanoparticle form, cytotoxicity is induced; thus, care should be taken with these materials.


Subject(s)
Colon/drug effects , Organoids/drug effects , Silicon Dioxide/toxicity , Titanium/toxicity , Animals , Cell Line , Humans , Mice , Mice, Inbred ICR , Nanoparticles/toxicity , Silicon Dioxide/chemistry , Titanium/chemistry , Toxicity Tests
13.
Int J Mol Sci ; 21(10)2020 May 25.
Article in English | MEDLINE | ID: mdl-32466320

ABSTRACT

Dry eye syndrome is the most common eye disease and it is caused by various reasons. As the balance of the tear film that protects the eyes is broken due to various causes, it becomes impossible to properly protect the eyes. In this study, the protective effects and underlying mechanisms of topical (E)-4-(2-(6-(2,6-dichloro-4-(trifluoromethyl)phenyl)-4-methyl-1,1-dioxido-1,2,6-thiadiazinan-2-yl)acetamido)adamantan-1-carboxamide (KR-67607), a novel selective 11ß-hydroxysteroid dehydrogenase 1 (11ß-HSD1) inhibitor, were investigated in benzalkonium chloride (BAC)-induced dry eye syndrome. BAC-treated rat eyes induced significant increases in ocular surface damage, decreased corneal thickness, corneal basement membrane destruction in the conjunctival epithelium, and expression of pro-inflammatory cytokines tumor necrosis factor-α and 11ß-HSD1. These effects of BAC were reversed by topical KR-67607 treatment. Furthermore, KR-67607 decreased 4-hydroxynonenal expression and increased antioxidant and mucus secretion in BAC-treated rat eyes. Taken together, a novel selective 11ß-HSD1 inhibitor can prevent BAC-induced dry eye syndrome by inhibiting pro-inflammatory cytokine and reactive oxygen species expression via the inhibition of both 11ß-HSD1 activity and expression.


Subject(s)
Adamantane/analogs & derivatives , Antioxidants/therapeutic use , Dry Eye Syndromes/drug therapy , Enzyme Inhibitors/therapeutic use , Thiadiazines/therapeutic use , 11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Adamantane/pharmacology , Adamantane/therapeutic use , Animals , Antioxidants/pharmacology , Benzalkonium Compounds/toxicity , Conjunctiva/drug effects , Conjunctiva/metabolism , Dry Eye Syndromes/etiology , Dry Eye Syndromes/prevention & control , Enzyme Inhibitors/pharmacology , NF-kappa B/metabolism , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Thiadiazines/pharmacology
14.
Article in English | MEDLINE | ID: mdl-32256659

ABSTRACT

The present study aimed to evaluate the potential synergistic and protective effects of ALM16, a mixture of Astragalus membranaceus (AM) and Lithospermum erythrorhizon (LE) extract in a ratio of 7 : 3, against hepatic steatosis in high fat diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD) mice. Forty-eight mice were randomly divided into eight groups and orally administered daily for 6 weeks with a normal diet (ND) or high fat diet alone (HFD), HFD with AM (HFD + 100 mg/kg AM extract), HFD with LE (HFD + 100 mg/kg LE extract), HFD with ALM16 (HFD + 50, 100, and 200 mg/kg ALM16), or HFD with MT (HFD + 100 mg/kg Milk thistle extract) as a positive control. ALM16 significantly decreased the body and liver weight, serum and hepatic lipid profiles, including triglyceride (TG), total cholesterol (TC), high-density lipoprotein-cholesterol (HDL), and low-density lipoprotein-cholesterol (LDL), and serum glucose levels, compared to the HFD group. Moreover, ALM16 significantly ameliorated the HFD-induced increased hepatic injury markers, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and gamma-glutamyltransferase (GGT)-1. Furthermore, as compared to the mice fed HFD alone, ALM16 increased the levels of phosphorylated AMP-activated protein kinase (p-AMPK) and acetyl-CoA carboxylase (p-ACC), thereby upregulating the expression of carnitine palmitoyltransferase (CPT)-1 and downregulating the expression of sterol regulatory element-binding protein (SREBP)-1c and fatty acid synthase (FAS). These results demonstrated that ALM16 markedly inhibited HFD-induced hepatic steatosis in NAFLD mice by modulating AMPK and ACC signaling pathways, and may be more effective than the single extracts of AM or LE.

15.
Diabetes Obes Metab ; 22(8): 1302-1315, 2020 08.
Article in English | MEDLINE | ID: mdl-32173999

ABSTRACT

AIM: Insulin resistance is a metabolic state where insulin sensitivity is lower than normal condition and strongly related to type 2 diabetes. However, an in vitro model mimicking insulin resistance is rare and thus screening drugs for insulin resistance severely depends on an in vivo model. Here, to increase anti-diabetic drug selectivity for humans, 3D ADMSCs and macrophages were co-cultured with in-house fabricated co-culture plates. MATERIAL AND METHODS: 3D co-culture plates were designed to load ADMSCs and RAW264.7 cells containing hydrogels in separate wells while allowing cell-cell interaction with co-culturing media. Hydrogels were constructed using a 3D cell-printing system containing 20 mg/ml alginate, 0.5 mg/ml gelatin and 0.5 mg/ml type I collagen. Cells containing hydrogels in 3D co-culture plates were incubated for 10 min to allow stabilization before the experiment. 3D co-culture plates were incubated with the CaCl2 solution for 5 min to complete the cross linking of alginate hydrogel. Cells in 3D co-culture plates were cultured for up to 12 days depending on the experiment and wells containing adipocytes and macrophages were separated and used for assays. RESULTS: KR-1, KR-2 and KR-3 compounds were applied during differentiation (12 days) in 3D co-cultured mouse 3T3-L1 adipocytes and 3D co-cultured human ADMSCs. Glucose uptake assay using 2-DG6P and 2-NBDG and western blot analysis were performed to investigate changes of insulin resistance in the 3D co-cultured model for interspecies selectivity of drug screening. KR-1 (mouse potent enantiomer) and KR-3 (racemic mixture) showed improvement of 2-DG and 2-NBDG uptake compared with KR-2 (human potent enantiomer) in 3D co-cultured 3T3-L1 adipocytes. In connection with insulin resistance in a 3D 3T3-L1 co-cultured model, KR-1 and KR-3 showed improvement of insulin sensitivity compared to KR-2 by markedly increasing GLUT4 expression. In contrast to the result of 3D co-cultured 3T3-L1 adipocytes, KR-1 failed to significantly improve 2-DG and 2-NBDG uptake in 3D co-cultured ADMSC adipocytes. Results of 2-NBDG accumulation and western blot analysis also showed that KR-2 and KR-3 improved insulin sensitivity relatively better than KR-1. CONCLUSIONS: Our 3D co-culture model with/without 3D co-culture plates can successfully mimic insulin resistance while allowing investigation of the effects of anti-obesity or anti-diabetic drugs on human or mouse co-culturing cell type. This 3D co-culture system may accelerate screening of drugs for insulin resistance depending on species.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Pharmaceutical Preparations , 3T3-L1 Cells , Adipocytes , Animals , Coculture Techniques , Glucose , Humans , Insulin , Mice
16.
RSC Adv ; 10(33): 19382-19389, 2020 May 20.
Article in English | MEDLINE | ID: mdl-35515479

ABSTRACT

Neural cell differentiation has been extensively studied in two-dimensional (2D) cell culture plates. However, the cellular microenvironment and extracellular matrix (ECM) are much more complex and flat 2D surfaces are hard to mimic in ECM. Carbon nanotubes (CNTs) and graphenes are multidimensional carbon-based nanomaterials and may be able to provide extra dimensions on cell growth and differentiation. To determine the effect of CNTs and graphene surfaces on the growth, gene expression, differentiation and functionality of neuroblastoma to a neural cell, SH-SY5Y cells were grown on a 2D (control) surface, a CNT network and a graphene film. The data suggest that SH-SY5Y cells grown on CNT surfaces show an average 20.2% increase in cell viability; 5.7% decrease in the ratio of cells undergoing apoptosis; 78.3, 43.4 and 38.1% increases in SOX2, GFAP and NeuN expression, respectively; and a 29.7% increase in mean firing rate on a multi-electrode array. SH-SY5Y cells grown on graphene film show little or no changes in cell properties compared to cells grown in 2D. The data indicate that the three-dimensional (3D) surface of CNTs provides a favorable environment for SH-SY5Y cells to proliferate and differentiate to neurons.

17.
Bioorg Med Chem Lett ; 30(2): 126787, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31759849

ABSTRACT

The 11ß-hydroxysteroiddehydrogenase type 1(11ß-HSD1), acortisolregenerating enzyme that amplifies tissue glucocorticoidlevels, plays an important role in diabetes, obesity, and glaucoma and is recognized as a potential therapeutic target for various disease conditions. Moreover, a recent study demonstrated that selective 11ß-HSD1 inhibitor can attenuate ischemic brain injury. This prompted us to optimize cyclic sulfamide derivative for aiming to treat ischemic brain injury. Among the synthesized compounds, 6e has an excellent in vitro activivity with an IC50 value of 1 nM toward human and mouse 11ß-HSD1 and showed good 11ß-HSD1 inhibition in ex vivo study using brain tissue isolated from mice. Furthermore, in the transient middle cerebral artery occlusion model in mice, 6e treatment significantly attenuated infarct volume and neurological deficit following cerebral ischemia/reperfusion injury. Additionally, binding modes of 6e for human and mouse 11ß-HSD1 were suggested.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , Amides/chemistry , Enzyme Inhibitors/chemistry , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Amides/metabolism , Animals , Brain/metabolism , Brain Injuries/drug therapy , Brain Injuries/pathology , Cyclization , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/therapeutic use , Humans , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/pathology , Injections, Intraperitoneal , Mice , Structure-Activity Relationship
18.
Bioorg Med Chem Lett ; 30(1): 126756, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31784318

ABSTRACT

SHP2, a non-receptor protein tyrosine phosphatase encoded by PTPN11 gene, plays an important role in the cell growth and proliferation. Activating mutations of SHP2 have been reported as a cause of various human diseases such as solid tumors, leukemia, and Noonan syndrome. The discovery of SHP2 inhibitor can be a potent candidate for the treatment of cancers and SHP2 related human diseases. Several reports on a small molecule targeting SHP2 have published, however, there are limitations on the discovery of SHP2 phosphatase inhibitors due to the polar catalytic site environment. Allosteric inhibitor can be an alternative to catalytic site inhibitors. 3,4,6-Trihydroxy-5-oxo-5H-benzo[7]annulene 1 was obtained as an initial hit with a 0.097 µM of IC50 from high-throughput screening (HTS) study. After the structure-activity relationship (SAR) study, compound 1 still showed the most potent activity against SHP2. Moreover, compound 1 exerted good potency against SHP2 expressing 2D and 3D MDA-MB-468.


Subject(s)
Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Cell Line, Tumor , Humans , Structure-Activity Relationship
19.
Sci Rep ; 9(1): 16746, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31727937

ABSTRACT

The demand for novel three-dimensional (3D) cell culture models of adipose tissue has been increasing, and proteomic investigations are important for determining the underlying causes of obesity, type II diabetes, and metabolic disorders. In this study, we performed global quantitative proteomic profiling of three 3D-cultured 3T3-L1 cells (preadipocytes, adipocytes and co-cultured adipocytes with macrophages) and their 2D-cultured counterparts using 2D-nanoLC-ESI-MS/MS with iTRAQ labelling. A total of 2,885 shared proteins from six types of adipose cells were identified and quantified in four replicates. Among them, 48 proteins involved in carbohydrate metabolism (e.g., PDHα, MDH1/2, FH) and the mitochondrial fatty acid beta oxidation pathway (e.g., VLCAD, ACADM, ECHDC1, ALDH6A1) were relatively up-regulated in the 3D co-culture model compared to those in 2D and 3D mono-cultured cells. Conversely, 12 proteins implicated in cellular component organisation (e.g., ANXA1, ANXA2) and the cell cycle (e.g., MCM family proteins) were down-regulated. These quantitative assessments showed that the 3D co-culture system of adipocytes and macrophages led to the development of insulin resistance, thereby providing a promising in vitro obesity model that is more equivalent to the in vivo conditions with respect to the mechanisms underpinning metabolic syndromes and the effect of new medical treatments for metabolic disorders.


Subject(s)
Adipocytes/cytology , Coculture Techniques/methods , Macrophages/cytology , Proteomics/methods , Spheroids, Cellular/cytology , 3T3-L1 Cells , Adipocytes/metabolism , Animals , Carbohydrate Metabolism , Chromatography, Liquid , Gene Expression Regulation , Gene Regulatory Networks , Insulin Resistance , Macrophages/metabolism , Mice , Models, Biological , Nanotechnology , RAW 264.7 Cells , Tandem Mass Spectrometry
20.
Biomolecules ; 9(10)2019 10 01.
Article in English | MEDLINE | ID: mdl-31581581

ABSTRACT

The aim of this study was to investigate the potential anti-cancer effects of probiotic cell-free supernatant (CFS) treatment using Lactobacillusfermentum for colorectal cancer (CRC) in 3D culture systems. Cell viability was assessed using MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) assays, whereas apoptosis was monitored through RT-qPCR analysis of Bax, Bak, Noxa, and Bid mRNA expressions in addition to flow cytometry analysis of Lactobacillus cell-free supernatant (LCFS) treatment. Our results showed that the anti-cancer effect of LCFS on cell viability was pronouncedly enhanced in 3D-cultured HCT-116 cells, which was linked to the increased level of cleaved caspase 3. Additionally, upregulation of apoptotic marker gene mRNA transcription was dramatically increased in 3D cultured cells compared to 2D systems. In conclusion, this study suggests that LCFS enhances the activation of intrinsic apoptosis in HCT-116 cells and the potential anti-cancer effects of Lactobacilli mixtures in 3D culture systems. All in all, our study highlights the benefits of 3D culture models over 2D culture modeling in studying the anti-cancer effects of probiotics.


Subject(s)
Biological Products/pharmacology , Cell Culture Techniques/methods , Colorectal Neoplasms/genetics , Limosilactobacillus fermentum/growth & development , Probiotics/pharmacology , Proto-Oncogene Proteins c-bcl-2/genetics , BH3 Interacting Domain Death Agonist Protein/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Colorectal Neoplasms/drug therapy , Gene Expression Regulation, Neoplastic/drug effects , HCT116 Cells , HT29 Cells , Humans , Limosilactobacillus fermentum/metabolism , Spheroids, Cellular/cytology , Spheroids, Cellular/drug effects , bcl-2 Homologous Antagonist-Killer Protein/genetics , bcl-2-Associated X Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...