Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Small ; : e2402431, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934549

ABSTRACT

In drug discovery, human organ-on-a-chip (organ chip) technology has emerged as an essential tool for preclinical testing, offering a realistic representation of human physiology, real-time monitoring, and disease modeling. Polydimethylsiloxane (PDMS) is commonly used in organ chip fabrication owing to its biocompatibility, flexibility, transparency, and ability to replicate features down to the nanoscale. However, the porous nature of PDMS leads to unintended absorption of small molecules, critically affecting the drug response analysis. Addressing this challenge, the precision drug testing organ chip (PreD chip) is introduced, an innovative platform engineered to minimize small molecule absorption while facilitating cell culture. This chip features a PDMS microchannel wall coated with a perfluoropolyether-based lubricant, providing slipperiness and antifouling properties. It also incorporates an ECM-coated semi-porous membrane that supports robust multicellular cultures. The PreD chip demonstrates its outstanding antifouling properties and resistance to various biological fluids, small molecule drugs, and plasma proteins. In simulating the human gut barrier, the PreD chip demonstrates highly enhanced sensitivity in tests for dexamethasone toxicity and is highly effective in assessing drug transport across the human blood-brain barrier. These findings emphasize the potential of the PreD chip in advancing organ chip-based drug testing methodologies.

2.
ACS Nano ; 18(22): 14388-14402, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38775287

ABSTRACT

Organ-on-a-chip, which recapitulates the dynamics of in vivo vasculature, has emerged as a promising platform for studying organ-specific vascular beds. However, its practical advantages in identifying vascular-targeted drug delivery systems (DDS) over traditional in vitro models remain underexplored. This study demonstrates the reliability and efficacy of the organ-on-a-chip in screening efficient DDS by comparing its performance with that of a conventional transwell, both designed to simulate the blood-brain barrier (BBB). The BBB nanoshuttles discovered through BBB Chip-based screening demonstrated superior functionality in vivo compared to those identified using transwell methods. This enhanced effectiveness is attributed to the BBB Chip's accurate replication of the structure and dynamics of the endothelial glycocalyx, a crucial protective layer within blood vessels, especially under shear stress. This capability of the BBB Chip has enabled the identification of molecular shuttles that efficiently exploit the endothelial glycocalyx, thereby enhancing transendothelial transport efficacy. Our findings suggest that organ-on-a-chip technology holds considerable promise for advancing research in vascular-targeted DDS due to its accurate simulation of molecular transport within endothelial systems.


Subject(s)
Blood-Brain Barrier , Lab-On-A-Chip Devices , Blood-Brain Barrier/metabolism , Animals , Drug Delivery Systems , Glycocalyx/metabolism , Glycocalyx/chemistry , Humans , Mice , Microphysiological Systems
3.
Biomater Res ; 28: 0008, 2024.
Article in English | MEDLINE | ID: mdl-38532906

ABSTRACT

Background: Cancer recurrence and metastasis are major contributors to treatment failure following tumor resection surgery. We developed a novel implantable drug delivery system utilizing glycol chitosan to address these issues. Glycol chitosan is a natural adjuvant, inducing dendritic cell activation to promote T helper 1 cell immune responses, macrophage activation, and cytokine production. Effective antigen production by dendritic cells initiates T-cell-mediated immune responses, aiding tumor growth control. Methods: In this study, we fabricated multifunctional methacrylated glycol chitosan (MGC) hydrogels with extended release of DNA/doxorubicin (DOX) complex for cancer immunotherapy. We constructed the resection model of breast cancer to verify the anticancer effects of MGC hydrogel with DNA/DOX complex. Results: This study demonstrated the potential of MGC hydrogel with extended release of DNA/DOX complex for local and efficient cancer therapy. The MGC hydrogel was implanted directly into the surgical site after tumor resection, activating tumor-related immune cells both locally and over a prolonged period of time through immune-reactive molecules. Conclusions: The MGC hydrogel effectively suppressed tumor recurrence and metastasis while enhancing immunotherapeutic efficacy and minimizing side effects. This biomaterial-based drug delivery system, combined with cancer immunotherapy, can substantial improve treatment outcomes and patient prognosis.

4.
Adv Healthc Mater ; 13(13): e2304371, 2024 05.
Article in English | MEDLINE | ID: mdl-38320209

ABSTRACT

Leukemia circulates in the bloodstream and induces various symptoms and complications. Occasionally, these cells accumulate in non-marrow tissues, forming a tumor-like myeloid sarcoma (MS). When the blast-stage leukemia cells invade the brain parenchyma, intracranial MS occurs, leading to a challenging prognosis owing to the limited penetration of cytostatic drugs into the brain and the development of drug resistance. The scarcity of tissue samples from MS makes understanding the phenotypic changes occurring in leukemia cells within the brain environment challenging, thereby hindering development of effective treatment strategies for intracranial MS. This study presents a novel 3D in vitro model mimicking intracranial MS, employing a hydrogel scaffold derived from the brain-decellularized extracellular matrix in which suspended leukemia cells are embedded, simulating the formation of tumor masses in the brain parenchyma. This model reveals marked phenotypic changes in leukemia cells, including altered survival, proliferation, differentiation, and cell cycle regulation. Notably, proportion of dormant leukemia stem cells increases and expression of multidrug resistance genes is upregulated, leading to imatinib resistance, mirroring the pathological features of in vivo MS tissue. Furthermore, suppression of ferroptosis is identified as an important characteristic of intracranial MS, providing valuable insights for the development of targeted therapeutic strategies.


Subject(s)
Brain , Extracellular Matrix , Sarcoma, Myeloid , Humans , Brain/pathology , Brain/metabolism , Cell Line, Tumor , Sarcoma, Myeloid/metabolism , Sarcoma, Myeloid/pathology , Extracellular Matrix/metabolism , Drug Resistance, Neoplasm , Cell Proliferation/drug effects , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Phenotype , Hydrogels/chemistry , Tissue Scaffolds/chemistry , Cell Differentiation/drug effects , Animals , Ferroptosis/drug effects
5.
Lab Chip ; 24(5): 1351-1366, 2024 02 27.
Article in English | MEDLINE | ID: mdl-38303676

ABSTRACT

Tumor metastasis involves complex processes that traditional 2D cultures and animal models struggle to fully replicate. Metastatic tumors undergo a multitude of transformations, including genetic diversification, adaptation to diverse microenvironments, and modified drug responses, contributing significantly to cancer-related mortality. Micro-physiological systems (MPS) technology emerges as a promising approach to emulate the metastatic process by integrating critical biochemical, biomechanical, and geometrical cues at a microscale. These systems are particularly advantageous simulating metastasis organotropism, the phenomenon where tumors exhibit a preference for metastasizing to particular organs. Organotropism is influenced by various factors, such as tumor cell characteristics, unique organ microenvironments, and organ-specific vascular conditions, all of which can be effectively examined using MPS. This review surveys the recent developments in MPS research from the past five years, with a specific focus on their applications in replicating tumor metastasis and organotropism. Furthermore, we discuss the current limitations in MPS-based studies of organotropism and propose strategies for more accurately replicating and analyzing the intricate aspects of organ-specific metastasis, which is pivotal in the development of targeted therapeutic approaches against metastatic cancers.


Subject(s)
Neoplasms , Animals , Neoplasm Metastasis , Tumor Microenvironment
6.
Nano Converg ; 11(1): 6, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38332364

ABSTRACT

Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a family of chronic disorders along the gastrointestinal tract. Because of its idiopathic nature, IBD does not have a fundamental cure; current available therapies for IBD are limited to prolonged doses of immunomodulatory agents. While these treatments may reduce inflammation, limited therapeutic efficacy, inconsistency across patients, and adverse side effects from aggressive medications remain as major drawbacks. Recently, excessive production and accumulation of neutrophil extracellular traps (NETs) also known as NETosis have been identified to exacerbate inflammatory responses and induce further tissue damage in IBD. Such discovery invited many researchers to investigate NETs as a potential therapeutic target. DNase-I is a natural agent that can effectively destroy NETs and, therefore, potentially reduce NETs-induced inflammations even without the use of aggressive drugs. However, low stability and rapid clearance of DNase-I remain as major limitations for further therapeutic applications. In this research, polymeric nanozymes were fabricated to increase the delivery and therapeutic efficacy of DNase-I. DNase-I was immobilized on the surface of polymeric nanoparticles to maintain its enzymatic properties while extending its activity in the colon. Delivery of DNase-I using this platform allowed enhanced stability and prolonged activity of DNase-I with minimal toxicity. When administered to animal models of IBD, DNase-I nanozymes successfully alleviated various pathophysiological symptoms of IBD. More importantly, DNase-I nanozyme administration successfully attenuated neutrophil infiltration and NETosis in the colon compared to free DNase-I or mesalamine.

7.
Transl Neurodegener ; 13(1): 1, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38173017

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder and the predominant type of dementia worldwide. It is characterized by the progressive and irreversible decline of cognitive functions. In addition to the pathological beta-amyloid (Aß) deposition, glial activation, and neuronal injury in the postmortem brains of AD patients, increasing evidence suggests that the often overlooked vascular dysfunction is an important early event in AD pathophysiology. Vascular endothelial growth factor (VEGF) plays a critical role in regulating physiological functions and pathological changes in blood vessels, but whether VEGF is involved in the early stage of vascular pathology in AD remains unclear. METHODS: We used an antiangiogenic agent for clinical cancer treatment, the humanized monoclonal anti-VEGF antibody bevacizumab, to block VEGF binding to its receptors in the 5×FAD mouse model at an early age. After treatment, memory performance was evaluated by a novel object recognition test, and cerebral vascular permeability and perfusion were examined by an Evans blue assay and blood flow scanning imaging analysis. Immunofluorescence staining was used to measure glial activation and Aß deposits. VEGF and its receptors were analyzed by enzyme-linked immunosorbent assay and immunoblotting. RNA sequencing was performed to elucidate bevacizumab-associated transcriptional signatures in the hippocampus of 5×FAD mice. RESULTS: Bevacizumab treatment administered from 4 months of age dramatically improved cerebrovascular functions, reduced glial activation, and restored long-term memory in both sexes of 5×FAD mice. Notably, a sex-specific change in different VEGF receptors was identified in the cortex and hippocampus of 5×FAD mice. Soluble VEGFR1 was decreased in female mice, while full-length VEGFR2 was increased in male mice. Bevacizumab treatment reversed the altered expression of receptors to be comparable to the level in the wild-type mice. Gene Set Enrichment Analysis of transcriptomic changes revealed that bevacizumab effectively reversed the changes in the gene sets associated with blood-brain barrier integrity and vascular smooth muscle contraction in 5×FAD mice. CONCLUSIONS: Our study demonstrated the mechanistic roles of VEGF at the early stage of amyloidopathy and the protective effects of bevacizumab on cerebrovascular function and memory performance in 5×FAD mice. These findings also suggest the therapeutic potential of bevacizumab for the early intervention of AD.


Subject(s)
Alzheimer Disease , Mice , Humans , Male , Female , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Vascular Endothelial Growth Factor A/therapeutic use , Bevacizumab/therapeutic use , Amyloid beta-Peptides/metabolism , Cognition
8.
Small Methods ; 8(5): e2301428, 2024 May.
Article in English | MEDLINE | ID: mdl-38161256

ABSTRACT

Mitigating sepsis-induced severe organ dysfunction with magnetic nanoparticles has shown remarkable advances in extracorporeal blood treatment. Nevertheless, treating large septic animals remains challenging due to insufficient magnetic separation at rapid blood flow rates (>6 L h-1) and limited incubation time in an extracorporeal circuit. Herein, superparamagnetic nanoclusters (SPNCs) coated with red blood cell (RBC) membranes are developed, which promptly capture and magnetically separate a wide range of pathogens at high blood flow rates in a swine sepsis model. The SPNCs exhibited an ultranarrow size distribution of clustered iron oxide nanocrystals and exceptionally high saturation magnetization (≈ 90 emu g-1) close to that of bulk magnetite. It is also revealed that CD47 on the RBCs allows the RBC-SPNCs to remain at a consistent concentration in the blood by evading innate immunity. The uniform size distribution of the RBC-SPNCs greatly enhances their effectiveness in eradicating various pathogenic materials in extracorporeal blood. The use of RBC-SPNCs for extracorporeal treatment of swine infected with multidrug-resistant E. coli is validated and found that severe bacteremic sepsis-induced organ dysfunction is significantly mitigated after 12 h. The findings highlight the potential application of RBC-SPNCs for extracorporeal therapy of severe sepsis in large animal models and potentially humans.


Subject(s)
Magnetite Nanoparticles , Sepsis , Animals , Sepsis/therapy , Swine , Magnetite Nanoparticles/chemistry , Erythrocytes , Multiple Organ Failure/therapy , Multiple Organ Failure/prevention & control , Disease Models, Animal , Escherichia coli Infections/therapy , Magnetic Iron Oxide Nanoparticles/chemistry , Escherichia coli
9.
Small ; : e2304862, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38050931

ABSTRACT

Atopic dermatitis (AD) is a widespread, recurrent, and chronic inflammatory skin condition that imposes a major burden on patients. Conventional treatments, such as corticosteroids, are associated with various side effects, underscoring the need for innovative therapeutic approaches. In this study, the possibility of using indole-3-acetic acid-loaded layered double hydroxides (IAA-LDHs) is evaluated as a novel treatment for AD. IAA is an auxin-class plant hormone with antioxidant and anti-inflammatory effects. Following the synthesis of IAA-LDH nanohybrids, their ability to induce M2-like macrophage polarization in macrophages obtained from mouse bone marrow is assessed. The antioxidant activity of IAA-LDH is quantified by assessing the decrease in intracellular reactive oxygen species levels. The anti-inflammatory and anti-atopic characteristics of IAA-LDH are evaluated in a mouse model of AD by examining the cutaneous tissues, immunological organs, and cells. The findings suggest that IAA-LDH has great therapeutic potential as a candidate for AD treatment based on its in vitro and in vivo modulation of AD immunology, enhancement of macrophage polarization, and antioxidant activity. This inorganic drug delivery technology represents a promising new avenue for the development of safe and effective AD treatments.

10.
Adv Sci (Weinh) ; 10(27): e2300164, 2023 09.
Article in English | MEDLINE | ID: mdl-37525340

ABSTRACT

Several stomach diseases are attributed to the dysregulation of physiological function of gastric mucosal barrier by pathogens. Gastric organoids are a promising tool to develop treatment strategies for gastric infections. However, their functional features of in vivo gastric mucosal barrier and host-microbe interactions are limited due to the lack of physiological stimuli. Herein, a human stomach micro-physiological system (hsMPS) with physiologically relevant gastric mucosal defense system is described based on the combination of organoid and MPS technology. A fluid flow enhanced epithelial-mesenchymal interaction in the hsMPS enables functional maturation of gastric epithelial cells, which allows for the recreation of mesh-like mucus layer containing high level of mucus protective peptides and well-developed epithelial junctional complexes. Furthermore, gastroprotection mechanisms against Helicobacter pylori (H. pylori) are successfully demonstrated in this system. Therefore, hsMPS represents a new in vitro tool for research where gastric mucosal defense mechanism is pivotal for developing therapeutic strategies.


Subject(s)
Mucous Membrane , Stomach , Humans , Epithelial Cells , Organoids , Defense Mechanisms
11.
Mater Today Bio ; 20: 100648, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37214546

ABSTRACT

Nanofiber (NF) membranes have been highlighted as functional materials for biomedical applications owing to their high surface-to-volume ratios, high permeabilities, and extracellular matrix-like biomimetic structures. Because many in vitro platforms for biomedical applications are made of thermoplastic polymers (TP), a simple and leak-free method for bonding NF membranes onto TP platforms is essential. Here, we propose a facile but leak-free localized thermal bonding method for integrating 2D or 3D-structured NF membrane onto a TP supporting substrate while preserving the pristine nanofibrous structure of the membrane, based on localized preheating of the substrate. A methodology for determining the optimal preheating temperature was devised based on a numerical simulation model considering the melting temperature of the NF material and was experimentally validated by evaluating bonding stability and durability under cell culture conditions. The thermally-bonded interface between the NF membrane and TP substrate was maintained stably for 3 weeks allowing the successful construction of an intestinal barrier model. The applicability of the localized thermal bonding method was also demonstrated on various combinations of TP materials (e.g., polystyrene and polymethylmethacrylate) and geometries of the supporting substrate, including a culture insert and microfluidic chip. We expect the proposed localized thermal bonding method to contribute toward broadening and realizing the practical applications of functional NF membranes in various biomedical fields.

12.
Adv Mater ; 35(25): e2211149, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37052392

ABSTRACT

Autologous implantable scaffolds that induce vasculogenesis have shown great potential in tissue regeneration; however, previous attempts mainly relied on cell-laden hydrogel patches using fat tissues or platelet-rich plasma, which are insufficient for generating a uniform vasculature in a scalable manner. Here, implantable vascularized engineered thrombi (IVETs) are presented using autologous whole blood, which potentiate effective skin wound healing by constructing robust microcapillary vessel networks at the wound site. Microfluidic shear stresses enable the alignment of bundled fibrin fibers along the direction of the blood flow streamlines and the activation of platelets, both of which offer moderate stiffness of the microenvironment optimal for facilitating endothelial cell maturation and vascularization. Rodent dorsal skin wounds patched with IVET present superior wound closure rates (96.08 ± 1.58%), epidermis thickness, collagen deposition, hair follicle numbers, and neutrophil infiltration, which are permitted by enhanced microvascular circulation. Moreover, IVET treatment accelerates wound healing by recruiting M2 phenotype macrophages.


Subject(s)
Fibrin , Thrombosis , Humans , Wound Healing , Collagen , Hydrogels , Tissue Scaffolds , Skin
13.
Tissue Eng Regen Med ; 20(3): 341-353, 2023 06.
Article in English | MEDLINE | ID: mdl-37079198

ABSTRACT

BACKGOUND: Considering the important role of the Peyer's patches (PPs) in gut immune balance, understanding of the detailed mechanisms that control and regulate the antigens in PPs can facilitate the development of immune therapeutic strategies against the gut inflammatory diseases. METHODS: In this review, we summarize the unique structure and function of intestinal PPs and current technologies to establish in vitro intestinal PP system focusing on M cell within the follicle-associated epithelium and IgA+ B cell models for studying mucosal immune networks. Furthermore, multidisciplinary approaches to establish more physiologically relevant PP model were proposed. RESULTS: PPs are surrounded by follicle-associated epithelium containing microfold (M) cells, which serve as special gateways for luminal antigen transport across the gut epithelium. The transported antigens are processed by immune cells within PPs and then, antigen-specific mucosal immune response or mucosal tolerance is initiated, depending on the response of underlying mucosal immune cells. So far, there is no high fidelity (patho)physiological model of PPs; however, there have been several efforts to recapitulate the key steps of mucosal immunity in PPs such as antigen transport through M cells and mucosal IgA responses. CONCLUSION: Current in vitro PP models are not sufficient to recapitulate how mucosal immune system works in PPs. Advanced three-dimensional cell culture technologies would enable to recapitulate the function of PPs, and bridge the gap between animal models and human.


Subject(s)
Antigens , Peyer's Patches , Animals , Humans , Immunity, Mucosal , Immunoglobulin A
14.
ACS Nano ; 17(9): 8153-8166, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37068137

ABSTRACT

Blood-brain barrier (BBB) remains one of the critical challenges in developing neurological therapeutics. Short single-stranded DNA/RNA nucleotides forming a three-dimensional structure, called aptamers, have received increasing attention as BBB shuttles for efficient brain drug delivery owing to their practical advantages over Trojan horse antibodies or peptides. Aptamers are typically obtained by combinatorial chemical technology, termed Systemic Evolution of Ligands by EXponential Enrichment (SELEX), against purified targets, living cells, or animal models. However, identifying reliable BBB-penetrating aptamers that perform efficiently under human physiological conditions has been challenging because of the poor physiological relevance in the conventional SELEX process. Here, we report a human BBB shuttle aptamer (hBS) identified using a human microphysiological system (MPS)-based SELEX (MPS-SELEX) method. A two-channel MPS lined with human brain microvascular endothelial cells (BMECs) interfaced with astrocytes and pericytes, recapitulating high-level barrier function of in vivo BBB, was exploited as a screening platform. The MPS-SELEX procedure enabled robust function-based screening of the hBS candidates, which was not achievable in traditional in vitro BBB models. The identified aptamer (hBS01) through five-round of MPS-SELEX exhibited high capability to transport protein cargoes across the human BBB via clathrin-mediated endocytosis and enhanced uptake efficiency in BMECs and brain cells. The enhanced targeting specificity of hBS01 was further validated both in vitro and in vivo, confirming its powerful brain accumulation efficiency. These findings demonstrate that MPS-SELEX has potential in the discovery of aptamers with high target specificity that can be widely utilized to boost the development of drug delivery strategies.


Subject(s)
Aptamers, Nucleotide , Animals , Humans , Aptamers, Nucleotide/chemistry , Endothelial Cells/metabolism , Blood-Brain Barrier/metabolism , Microphysiological Systems , SELEX Aptamer Technique/methods , Ligands
15.
Acta Biomater ; 159: 188-200, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36724863

ABSTRACT

A growing body of evidence has indicated that white adipose tissue (AT) remodeling is a major trigger for obesity-associated metabolic complications. However, the scarcity of translational models is an obstacle to the development of medicines that act on adipose restoration. Here, we describe a microphysiological system (MPS) that emulates the unique features of reprogrammed AT as a new in vitro tool for studying AT pathophysiology in obesity. The AT MPS contained mature adipocytes embedded in an extracellular matrix (ECM) hydrogel interfaced with AT microvascular endothelium, which was constantly perfused with fresh media. The unique biochemical signals due to the remodeled ECM in obesity were recapitulated using a decellularized AT ECM (AT dECM) hydrogel, which preserves the features of altered ECM composition in obesity. The mature adipocytes embedded in the AT dECM hydrogel maintained their function and morphology for a week without dedifferentiation. Using the AT MPS, we successfully modeled inflammation-induced AT microvascular dysfunction, the recruitment of immune cells due to the upregulation of cell adhesion molecules, and higher cancer cell adhesion as an indicator of metastasis, which are observed in obese individuals. The AT MPS may therefore represent a promising platform for understanding the dynamic cellular interplay in obesity-induced AT remodeling and validating the efficacy of drugs targeting AT in obesity. STATEMENT OF SIGNIFICANCE: The lack of translational in vitro white adipose tissue (AT) models is one of the main obstacles for understanding the obesity-induced reprogramming and the development of medicines. We report herein the AT microphysiological system (MPS), which recapitulates obesity and normal conditions and yields cell- and AT dECM-derived signals, thereby allowing accurate comparative in vitro analyses. Using the AT MPS, we successfully modeled reprogrammed AT in obesity conditions, including inflammation-induced AT vascular dysfunction, the recruitment of immune cells, and higher cancer cell metastasis, which are observed in obese individuals. Our proposed adipose tissue model providing physiological relevance and complexity may therefore enhance the understanding of obesity-associated disorders and be used to investigate their underlying molecular mechanisms to develop pharmacologic treatment strategies.


Subject(s)
Adipose Tissue , Microphysiological Systems , Humans , Obesity/pathology , Extracellular Matrix/metabolism , Hydrogels/metabolism , Inflammation/pathology
16.
Biosens Bioelectron ; 224: 115057, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36640548

ABSTRACT

Organs-on-chips (OoCs) are biomimetic in vitro systems based on microfluidic cell cultures that recapitulate the in vivo physicochemical microenvironments and the physiologies and key functional units of specific human organs. These systems are versatile and can be customized to investigate organ-specific physiology, pathology, or pharmacology. They are more physiologically relevant than traditional two-dimensional cultures, can potentially replace the animal models or reduce the use of these models, and represent a unique opportunity for the development of personalized medicine when combined with human induced pluripotent stem cells. Continuous monitoring of important quality parameters of OoCs via a label-free, non-destructive, reliable, high-throughput, and multiplex method is critical for assessing the conditions of these systems and generating relevant analytical data; moreover, elaboration of quality predictive models is required for clinical trials of OoCs. Presently, these analytical data are obtained by manual or automatic sampling and analyzed using single-point, off-chip traditional methods. In this review, we describe recent efforts to integrate biosensing technologies into OoCs for monitoring the physiologies, functions, and physicochemical microenvironments of OoCs. Furthermore, we present potential alternative solutions to current challenges and future directions for the application of artificial intelligence in the development of OoCs and cyber-physical systems. These "smart" OoCs can learn and make autonomous decisions for process optimization, self-regulation, and data analysis.


Subject(s)
Biosensing Techniques , Induced Pluripotent Stem Cells , Animals , Humans , Artificial Intelligence , Biosensing Techniques/methods , Microfluidics , Precision Medicine , Lab-On-A-Chip Devices
17.
Biomaterials ; 293: 121983, 2023 02.
Article in English | MEDLINE | ID: mdl-36610323

ABSTRACT

The basement membrane (BM) of the blood-brain barrier (BBB), a thin extracellular matrix (ECM) sheet underneath the brain microvascular endothelial cells (BMECs), plays crucial roles in regulating the unique physiological barrier function of the BBB, which represents a major obstacle for brain drug delivery. Owing to the difficulty in mimicking the unique biophysical and chemical features of BM in in vitro systems, current in vitro BBB models have suffered from poor physiological relevance. Here, we describe a highly ameliorated human BBB model accomplished by an ultra-thin ECM hydrogel-based engineered basement membrane (nEBM), which is supported by a sparse electrospun nanofiber scaffold that offers in vivo BM-like microenvironment to BMECs. BBB model reconstituted on a nEBM recapitulates the physical barrier function of the in vivo human BBB through ECM mechano-response to physiological relevant stiffness (∼500 kPa) and exhibits high efflux pump activity. These features of the proposed BBB model enable modelling of ischemic stroke, reproducing the dynamic changes of BBB, immune cell infiltration, and drug response. Therefore, the proposed BBB model represents a powerful tool for predicting the BBB permeation of drugs and developing therapeutic strategies for brain diseases.


Subject(s)
Blood-Brain Barrier , Endothelial Cells , Humans , Blood-Brain Barrier/physiology , Endothelial Cells/physiology , Brain/physiology , Cells, Cultured , Basement Membrane
18.
Acta Biomater ; 165: 153-167, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-36243378

ABSTRACT

Tumor angiogenesis is regarded as a promising target for limiting cancer progression because tumor-associated vasculature supplies blood and provides a path for metastasis. Thus, in vitro recapitulation of vascularized tumors is critical to understand the pathology of cancer and identify the mechanisms by which tumor cells proliferate, metastasize, and respond to drugs. In this study, we microengineered a vascularized tumor spheroid (VTS) model to reproduce the pathological features of solid tumors. We first generated tumor-EC hybrid spheroids with self-assembled intratumoral vessels, which enhanced the uniformity of the spheroids and peritumoral angiogenic capacity compared to spheroids composed only with cancer cells. Notably, the hybrid spheroids also exhibited expression profiles associated with aggressive behavior. The blood vessels sprouting around the hybrid spheroids on the VTS chip displayed the distinctive characteristics of leaky tumor vessels. With the VTS chip showing a progressive tumor phenotype, we validated the suppressive effects of axitinib on tumor growth and angiogenesis, which depended on exposure dose and time, highlighting the significance of tumor vascularization to predict the efficacy of anticancer drugs. Ultimately, we effectively induced both lymphangiogenesis and angiogenesis around the tumor spheroid by promoting interstitial flow. Thus, our VTS model is a valuable platform with which to investigate the interactions between tumor microenvironments and explore therapeutic strategies in cancer. STATEMENT OF SIGNIFICANCE: We conducted an integrative study within a vascularized tumor spheroid (VTS) model. We first generated tumor-EC hybrid spheroids with self-assembled intratumoral vessels, which enhanced the uniformity of the spheroids and peritumoral angiogenic capacity compared to spheroids composed only with cancer cells. Through RNA sequencing, we elucidated that the tumor-EC hybrid spheroids exhibited expression profiles associated with aggressive behavior such as cancer progression, invasion and metastasis. The blood vessels sprouting around the hybrid spheroids on the VTS chip displayed the distinctive characteristics of leaky tumor vessels. We further validated the suppressive effects of axitinib on tumor growth and angiogenesis, depending on exposure dose and time. Ultimately, we effectively induced both lymphangiogenesis and angiogenesis around the tumor spheroid by promoting interstitial flow.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Spheroids, Cellular/pathology , Axitinib/pharmacology , Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/pathology , Tumor Microenvironment
19.
Biomaterials ; 289: 121762, 2022 10.
Article in English | MEDLINE | ID: mdl-36058029

ABSTRACT

Cancer immunotherapy is a next-generation treatment strategy; however, its side effects limit its clinical translation. Here, a novel combination of a multi-functional nano-adjuvant (M-NA) prepared with an iron oxide/gold core and a cationic polymer shell via multilayer synthesis with CpG oligodeoxynucleotide (CpG-ODN) electrostatically complexed on its surface, and irreversible electroporation (IRE) technique was developed for effective image-guided in situ cancer vaccination. The M-NA can be retained long-term in the dense tumoral extracellular matrix after intratumoral injection and internalized by antigen-presenting cells (APCs). The IRE can induce immunogenic cell death. Indeed, in a mouse tumor model, the M-NA showed longer tumor retention time than free CpG-ODN. Compared with other treatments, the combined treatment significantly inhibited tumor growth with 100% survival rate for ∼60 days. The therapy induced the activation of cytotoxic lymphocytes and the maturation of APCs in vivo. This treatment could be effective in image-guided local cancer immunotherapy.


Subject(s)
Neoplasms , Oligodeoxyribonucleotides , Adjuvants, Immunologic , Animals , Electroporation/methods , Gold , Mice , Neoplasms/therapy , Polymers , Vaccination
20.
Nanomaterials (Basel) ; 12(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36144883

ABSTRACT

Collision (or impact) of single palladium nanoparticles (Pd NPs) on gold (Au), copper (Cu), nickel (Ni), and platinum (Pt) ultramicroelectrodes (UMEs) were investigated via electrocatalytic amplification method. Unlike the blip responses of previous Pd NP collision studies, the staircase current response was obtained with the Au UME. The current response, including collision frequency and peak magnitude, was analyzed depending on the material of the UME and the applied potential. Adsorption factors implying the interaction between the Pd NP and the UMEs are suggested based on the experimental results.

SELECTION OF CITATIONS
SEARCH DETAIL
...