Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Tissue Eng Regen Med ; 20(7): 1173-1190, 2023 12.
Article in English | MEDLINE | ID: mdl-37843784

ABSTRACT

BACKGROUND: The emergence of various infectious diseases and the toxic effects of hyperinflammation by biotherapeutics have highlighted the need for in vitro preclinical models mimicking the human immune system. In vitro models studying the relationship between hyperinflammation and acute renal injury mainly rely on 2D culture systems, which have shown limitations in recapitulating kidney function. Herein, we developed an in vitro kidney toxicity model by co-culturing 3D engineered kidney proximal tubules cells (RPTEC/TERT1) with human peripheral blood mononuclear cells (PBMC). METHODS: RPTEC/TERT1 were sandwich cultured to form 3D renal tubules for 16 days. The tubules were then co-cultured with PBMC using transwell (0.4 µm pores) for 24 h. Hyperinflammation of PBMC was induced during co-culture using polyinosinic-polycytidylic acid (polyI:C) and lipopolysaccharide (LPS) to investigate the effects of the induced hyperinflammation on the renal tubules. RESULTS: Encapsulated RPTEC/TERT1 cells in Matrigel exhibited elevated renal function markers compared to 2D culture. The coexistence of PBMC and polyI:C induced a strong inflammatory response in the kidney cells. This hyperinflammation significantly reduced primary cilia formation and upregulated kidney injury markers along the 3D tubules. Similarly, treating co-cultured PBMC with LPS to induce hyperinflammation resulted in comparable inflammatory responses and potential kidney injury. CONCLUSION: The model demonstrated similar changes in kidney injury markers following polyI:C and LPS treatment, indicating its suitability for detecting immune-associated kidney damage resulting from infections and biopharmaceutical applications.


Subject(s)
Leukocytes, Mononuclear , Lipopolysaccharides , Humans , Coculture Techniques , Cell Line , Inflammation
2.
Cell Mol Gastroenterol Hepatol ; 14(4): 769-788, 2022.
Article in English | MEDLINE | ID: mdl-35843546

ABSTRACT

BACKGROUND & AIMS: Although cancer immunotherapies are effective for advanced-stage cancers, there are no clinically approved immunotherapies for colon cancers (CRCs). Therefore, there is a high demand for the development of novel therapies. Extracellular adenosine-mediated signaling is considered a promising target for advanced-stage cancers that are nonresponsive to programmed death 1 (PD-1)-/programmed death-ligand 1 (PD-L1)-targeted immunotherapies. In this study, we aimed to elucidate novel tumorigenic mechanisms of extracellular adenosine. METHODS: To investigate the effects of extracellular adenosine on tumor-associated macrophages, peripheral blood-derived human macrophages were treated with adenosine and analyzed using flow cytometry and Western blot. Changes in adenosine-treated macrophages were further assessed using multi-omics analysis, including total RNA sequencing and proteomics. Colon cancer mouse models were used to measure the therapeutic efficacy of AB680 and palbociclib. We also used tissue microarrays of patients with CRC, to evaluate their clinical relevance. RESULTS: Extracellular adenosine-mediated reduction of cyclin D1 (CCND1) was found to be critical for the regulation of immune checkpoint molecules and PD-L1 levels in human macrophages, indicating that post-translational modification of PD-L1 is affected by adenosine. A potent CD73 selective inhibitor, AB680, reversed the effects of adenosine on CCND1 and PD-L1. This result strongly suggests that AB680 is a combinatory therapeutic option to overcome the undesired side effects of the cyclin-dependent kinase 4/6 inhibitor, palbociclib, which increases PD-L1 expression in tumors. Because palbociclib is undergoing clinical trials for metastatic CRC in combination with cetuximab (clinical trial number: NCT03446157), we validated that the combination of AB680 and palbociclib significantly improved anti-tumor efficacy in CRC animal models, thereby highlighting it as a novel immunotherapeutic strategy. We further assessed whether the level of CCND1 in tumor-associated macrophages was indeed reduced in tumor sections obtained from patients with CRC, for evaluating the clinical relevance of this strategy. CONCLUSIONS: In this study, we demonstrated that a novel combination therapy of AB680 and palbociclib may be advantageous for the treatment of CRC.


Subject(s)
B7-H1 Antigen , Colorectal Neoplasms , Adenosine/pharmacology , Adenosine/therapeutic use , Animals , B7-H1 Antigen/metabolism , Cetuximab , Colorectal Neoplasms/genetics , Cyclin D1 , Cyclin-Dependent Kinase 4 , Humans , Immune Checkpoint Proteins , Mice , Programmed Cell Death 1 Receptor
3.
Toxicol In Vitro ; 82: 105374, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35537566

ABSTRACT

Drug-induced liver injury (DILI) is an adverse hepatic reaction and a serious concern for public healthcare systems and pharmaceutical companies. DILI is frequently caused by a combination of direct toxic stresses and subsequent immune damage to hepatocytes. However, little is known about the mechanism by which drugs facilitate the activation of the innate immune system. Here, we aimed to decipher the inflammatory events in trovafloxacin (TVX)-induced reactions using liver macrophages. We showed that proinflammatory M1-like macrophages mainly contributed to hepatotoxicity mediated by TVX, a DILI drug. Additionally, transcriptome results showed that the interferon type I pathway, cytokines, and apoptosis pathway were involved in the initiation of synergistic effects resulting in TVX-induced liver injury. We hypothesized that DILI drugs could drive liver injury by altering the activation and phenotype of hepatic macrophages. Furthermore, drug treatment-induced transcriptional changes such as Traf1 and 2, Socs3, and Hbegf in macrophage polarization could be used to assess drug-specific immune-mediated reactions. Therefore, we proposed that transcriptional change in the genes related to macrophage polarization index could be an indicator to reflect the severity of DILI in a preclinical setting during drug development.


Subject(s)
Chemical and Drug Induced Liver Injury , Drug-Related Side Effects and Adverse Reactions , Chemical and Drug Induced Liver Injury/metabolism , Fluoroquinolones , Humans , Inflammation/chemically induced , Inflammation/metabolism , Liver/metabolism , Macrophages , Naphthyridines/metabolism , Naphthyridines/toxicity
4.
Toxics ; 9(10)2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34678949

ABSTRACT

Polyhexamethyleneguanidine phosphate (PHMG-P) is one of the causative agents of humidifier disinfectant-induced lung injury. Direct exposure of the lungs to PHMG-P causes interstitial pneumonia with fibrosis. Epidemiological studies showed that patients with humidifier disinfectant-associated lung injuries have suffered from restrictive lung function five years after the onset of the lung injuries. We investigated whether lung damage was sustained after repeated exposure to PHMG-P followed by a long-term recovery and evaluated the adverse effects of PHMG-P on mice lungs. Mice were intranasally instilled with 0.3 mg/kg PHMG-P six times at two weeks intervals, followed by a recovery period of 292 days. Histopathological examination of the lungs showed the infiltration of inflammatory cells, the accumulation of extracellular matrix in the lung parenchyma, proteinaceous substances in the alveoli and bronchiolar-alveolar hyperplasia. From RNA-seq, the gene expression levels associated with the inflammatory response, leukocyte chemotaxis and fibrosis were significantly upregulated, whereas genes associated with epithelial/endothelial cells development, angiogenesis and smooth muscle contraction were markedly decreased. These results imply that persistent inflammation and fibrotic changes caused by repeated exposure to PHMG-P led to the downregulation of muscle and vascular development and lung dysfunction. Most importantly, this pathological structural remodeling induced by PHMG-P was not reversed even after long-term recovery.

5.
Int J Mol Sci ; 22(15)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34360580

ABSTRACT

Melanin causes melasma, freckles, age spots, and chloasma. Anti-melanogenic agents can prevent disease-related hyperpigmentation. In the present study, the dose-dependent tyrosinase inhibitory activity of Avenanthramide (Avn)-A-B-C was demonstrated, and 100 µM Avn-A-B-C produced the strongest competitive inhibition against inter-cellular tyrosinase and melanin synthesis. Avn-A-B-C inhibits the expression of melanogenesis-related proteins, such as TRP1 and 2. Molecular docking simulation revealed that AvnC (-7.6 kcal/mol) had a higher binding affinity for tyrosinase than AvnA (-7.3 kcal/mol) and AvnB (-6.8 kcal/mol). AvnC was predicted to interact with tyrosinase through two hydrogen bonds at Ser360 (distance: 2.7 Å) and Asn364 (distance: 2.6 Å). In addition, AvnB and AvnC were predicted to be skin non-sensitizers in mammals by the Derek Nexus Quantitative Structure-Activity Relationship system.


Subject(s)
Computer Simulation , Melanins/biosynthesis , Melanoma/drug therapy , Monophenol Monooxygenase/antagonists & inhibitors , Skin/drug effects , alpha-MSH/pharmacology , ortho-Aminobenzoates/pharmacology , Hormones/pharmacology , Humans , In Vitro Techniques , Melanoma/metabolism , Melanoma/pathology , Molecular Docking Simulation , Tumor Cells, Cultured
6.
J Cell Mol Med ; 25(14): 6976-6987, 2021 07.
Article in English | MEDLINE | ID: mdl-34114341

ABSTRACT

Krüppel-like factor 4 (KLF4) is a zinc-finger containing DNA-binding transcription factor involved in tumorigenesis and acts as a tumour suppressor or an oncogene depending on the tissue. In hepatocellular carcinoma (HCC), KLF4 has been considered as a tumour suppressor, although the mechanism underlying its action remains largely unknown. In this study, we identified the ubiquitin-specific peptidase USP11 as a KLF4-interacting deubiquitinating enzyme using a proteomic approach. USP11 destabilizes KLF4 through the removal of K63-dependent polyubiquitination, thereby inhibiting KLF4 expression. We also provide mechanistic insights into KLF4 degradation and show that USP11 depletion inhibits growth and chemoresistance of HCC cells by enhancing KLF4 stability. Importantly, lipid content was reduced and genes involved in fatty acid metabolism were down-regulated in an in vitro steatosis conditions upon USP11 knockout. Finally, elevated USP11 and reduced KLF4 levels were detected both in a hepatic steatosis in vitro model and in public clinical data of non-alcoholic fatty liver disease and HCC patients. Collectively, these findings suggest that USP11, as KLF4-binding partner, is an important mediator of hepatic tumorigenesis that functions via degradation of KLF4 and is a potential treatment target for liver diseases.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Fatty Liver/metabolism , Liver Neoplasms/metabolism , Thiolester Hydrolases/metabolism , Fatty Acids/metabolism , HEK293 Cells , Hep G2 Cells , Humans , Kruppel-Like Factor 4/metabolism , Protein Binding , Ubiquitination
7.
Int J Mol Sci ; 22(7)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33915826

ABSTRACT

Six kuwanon derivatives (A/B/C/E/H/J) extracted from the roots of Morus alba L. were evaluated to determine their cyclooxygenase (COX)-1 and 2 inhibitory effects. Cyclooxygenase (COX) is known as the target enzyme of nonsteroidal anti-inflammatory drugs (NSAIDs), which are the most widely used therapeutic agents for pain and inflammation. Among six kuwanon derivatives, kuwanon A showed selective COX-2 inhibitory activity, almost equivalent to that of celecoxib, a known COX inhibitor. Kuwanon A showed high COX-2 inhibitory activity (IC50 = 14 µM) and a selectivity index (SI) range of >7.1, comparable to celecoxib (SI > 6.3). To understand the mechanisms underlying this effect, we performed docking simulations, fragment molecular orbital (FMO) calculations, and pair interaction energy decomposition analysis (PIEDA) at the quantum-mechanical level. As a result, kuwanon A had the strongest interaction with Arg120 and Tyr355 at the gate of the COX active site (-7.044 kcal/mol) and with Val89 in the membrane-binding domain (-6.599 kcal/mol). In addition, kuwanon A closely bound to Val89, His90, and Ser119, which are residues at the entrance and exit routes of the COX active site (4.329 Å). FMO calculations and PIEDA well supported the COX-2 selective inhibitory action of kuwanon A. It showed that the simulation and modeling results and experimental evidence were consistent.


Subject(s)
Benzene Derivatives/pharmacology , Cyclooxygenase 2 Inhibitors/isolation & purification , Flavonoids/pharmacology , Morus/chemistry , Benzene Derivatives/isolation & purification , Flavonoids/isolation & purification , Molecular Docking Simulation , Plant Extracts/chemistry
8.
Phytomedicine ; 86: 153440, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33376043

ABSTRACT

BACKGROUND: Highly effective novel treatments need to be developed to suppress emerging coronavirus (CoV) infections such as COVID-19. The RNA dependent RNA polymerase (RdRp) among the viral proteins is known as an effective antiviral target. Lycorine is a phenanthridine Amaryllidaceae alkaloid isolated from the bulbs of Lycoris radiata (L'Hér.) Herb. and has various pharmacological bioactivities including antiviral function. PURPOSE: We investigated the direct-inhibiting action of lycorine on CoV's RdRp, as potential treatment for emerging CoV infections. METHODS: We examined the inhibitory effect of lycorine on MERS-CoV, SARS-CoV, and SARS-CoV-2 infections, and then quantitatively measured the inhibitory effect of lycorine on MERS-CoV RdRp activity using a cell-based reporter assay. Finally, we performed the docking simulation with lycorine and SARS-CoV-2 RdRp. RESULTS: Lycorine efficiently inhibited these CoVs with IC50 values of 2.123 ± 0.053, 1.021 ± 0.025, and 0.878 ± 0.022 µM, respectively, comparable with anti-CoV effects of remdesivir. Lycorine directly inhibited MERS-CoV RdRp activity with an IC50 of 1.406 ± 0.260 µM, compared with remdesivir's IC50 value of 6.335 ± 0.731 µM. In addition, docking simulation showed that lycorine interacts with SARS-CoV-2 RdRp at the Asp623, Asn691, and Ser759 residues through hydrogen bonding, at which the binding affinities of lycorine (-6.2 kcal/mol) were higher than those of remdesivir (-4.7 kcal/mol). CONCLUSIONS: Lycorine is a potent non-nucleoside direct-acting antiviral against emerging coronavirus infections and acts by inhibiting viral RdRp activity; therefore, lycorine may be a candidate against the current COVID-19 pandemic.


Subject(s)
Amaryllidaceae Alkaloids/pharmacology , Antiviral Agents/pharmacology , Phenanthridines/pharmacology , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Animals , Chlorocebus aethiops , Hydrogen Bonding , Middle East Respiratory Syndrome Coronavirus/drug effects , Molecular Docking Simulation , Severe acute respiratory syndrome-related coronavirus/drug effects , Vero Cells , Viral Proteins
9.
Molecules ; 25(18)2020 Sep 07.
Article in English | MEDLINE | ID: mdl-32906766

ABSTRACT

We evaluated the anti-inflammatory effects of SNAH in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages by performing nitric oxide (NO) assays, cytokine enzyme-linked immunosorbent assays, Western blotting, and real-time reverse transcription-polymerase chain reaction analysis. SNAH inhibited the production of NO (nitric oxide), reactive oxygen species (ROS), tumor necrosis factor (TNF)-α, and interleukin (IL)-6. Additionally, 100 µM SNAH significantly inhibited total NO and ROS inhibitory activity by 93% (p < 0.001) and 34% (p < 0.05), respectively. Protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) stimulated by LPS were also decreased by SNAH. Moreover, SNAH significantly (p < 0.001) downregulated the TNF-α, IL-6, and iNOS mRNA expression upon LPS stimulation. In addition, 3-100 µM SNAH was not cytotoxic. Docking simulations and enzyme inhibitory assays with COX-2 revealed binding scores of -6.4 kcal/mol (IC50 = 47.8 µM) with SNAH compared to -11.1 kcal/mol (IC50 = 0.45 µM) with celecoxib, a known selective COX-2 inhibitor. Our results demonstrate that SNAH exerts anti-inflammatory effects via suppression of ROS and NO by COX-2 inhibition. Thus, SNAH may be useful as a pharmacological agent for treating inflammation-related diseases.


Subject(s)
Acrolein/analogs & derivatives , Anti-Inflammatory Agents/pharmacology , Lipopolysaccharides/immunology , Macrophages/immunology , Macrophages/metabolism , Acrolein/chemistry , Acrolein/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Cell Survival/drug effects , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , Cytokines/metabolism , Free Radical Scavengers/pharmacology , Gene Expression , Mice , Molecular Docking Simulation , Molecular Dynamics Simulation , NF-kappa B/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Structure-Activity Relationship
10.
PLoS One ; 15(4): e0231049, 2020.
Article in English | MEDLINE | ID: mdl-32287277

ABSTRACT

Zika virus (ZIKV) is an emerging mosquito-borne flavivirus that has attracted global attention and international awareness. ZIKV infection exhibits mild symptoms including fever and pains; however, ZIKV has recently been shown to be related to increased birth defects, including microcephaly, in infants. In addition, ZIKV is related to the onset of neurological disorders, such as a type of paralysis similar to Guillain-Barré syndrome. However, the mechanisms through which ZIKV affect neuronal cells and myeloid dendritic cells and how ZIKV avoids host immunity are unclear. Accordingly, in this study, we analyzed RNA sequencing data from ZIKV-infected neuronal cells and myeloid dendritic cells by comparative network analyses using protein-protein interaction information. Comparative network analysis revealed major genes showing differential changes in the peripheral neurons, neural crest cells, and myeloid dendritic cells after ZIKV infection. The genes were related to DNA repair systems and prolactin signaling as well as the interferon signaling, neuroinflammation, and cell cycle pathways. These pathways were interconnected by the interaction of proteins in the pathway and significantly regulated by ZIKV infection in neuronal cells and myeloid dendritic cells. Our analysis showed that neuronal cell damage occurred through up-regulation of neuroinflammation and down-regulation of the DNA repair system, but not in myeloid dendritic cells. Interestingly, immune escape by ZIKV infection could be caused by downregulation of prolactin signaling including IRS2, PIK3C3, JAK3, STAT3, and IRF1 as well as mitochondria dysfunction and oxidative phosphorylation in myeloid dendritic cells. These findings provide insight into the mechanisms of ZIKV infection in the host and the association of ZIKV with neurological and immunological symptoms, which may facilitate the development of therapeutic agents and vaccines.


Subject(s)
Dendritic Cells/virology , Gene Expression Regulation, Viral , Myeloid Cells/virology , Neurons/virology , Zika Virus Infection/metabolism , Zika Virus , Dendritic Cells/metabolism , Humans , Myeloid Cells/metabolism , Neurons/metabolism , Transcription, Genetic
11.
Animals (Basel) ; 10(3)2020 Mar 23.
Article in English | MEDLINE | ID: mdl-32210054

ABSTRACT

Stresses and various infectious reagents caused multiple inflammatory diseases in swine in a livestock industrial environment. Therefore, there is a need for an effective therapeutic or preventive agent that could alleviate chronic and acute inflammation. We found that lysophosphatidic acid (LPA), a stress-induced potent endogenous inflammatory molecule, causes a broad range-regulation of inflammation related genes inflammation in swine macrophages. We further investigated the genome scaled transcriptional regulatory effect of a novel LPA-signaling antagonist, KA-1002 on swine macrophages, inducing the alleviated LPA-mediated inflammation related gene expression. Therefore, KA-1002 could potentially serve as a novel therapeutic or preventive agent to maintain physiologically healthy and balanced conditions of pigs.

12.
Front Pharmacol ; 11: 67, 2020.
Article in English | MEDLINE | ID: mdl-32116729

ABSTRACT

Drug-induced liver injury (DILI) is one of the major reasons for termination of drug development. Due to the importance of predicting DILI in early phases of drug development, diverse in silico models have been developed to filter out DILI-causing candidates before clinical study. However, no computational models have achieved sufficient prediction power for screening DILI in early phases because 1) drugs often cause liver injury through reactive metabolites, 2) different clinical outcomes of DILI have different mechanisms, and 3) the DILI label on drugs is not clearly defined. In this study, we developed binary classification models to predict drug-induced cholestasis, cirrhosis, hepatitis, and steatosis based on the structure of drugs and their metabolites. DILI-positive data was obtained from post-market reports of drugs and DILI-negative data from DILIrank, a database curated by the Food and Drug Administration (FDA). Support vector machine (SVM) and random forest (RF) were used in developing models with nine fingerprints and one 2D molecular descriptor calculated from drug (152 DILI-positives and 102 DILI-negatives) and drug metabolite (192 DILI-positives and 126 DILI-negatives) structures. Models were developed according to Organisation for Economic Co-operation and Development (OECD) guidelines for quantitative structure-activity relationship (QSAR) validation. Internal and external validation was performed with a randomization test in order to thoroughly examine model predictability and avoid random correlation between structural features and adverse outcomes. The applicability domain was defined with a leverage method for reliable prediction of new chemicals. The best models for each liver disease were selected based on external validation results from drugs (cholestasis: 70%, cirrhosis: 90%, hepatitis: 83%, and steatosis: 85%) and drug metabolites (cholestasis: 86%, cirrhosis: 88%, hepatitis: 86%, and steatosis: 83%) with applicability domain analysis. Compiled data sets were further exploited to derive privileged substructures that were more frequent in DILI-positive sets compared to DILI-negative sets and in drug metabolite structures compared to drug structures with a Morgan fingerprint level 2.

13.
Sci Rep ; 9(1): 7094, 2019 05 08.
Article in English | MEDLINE | ID: mdl-31068647

ABSTRACT

Mucosal-associated invariant T (MAIT) cells exhibit different characteristics from those of TCRα7.2- conventional T cells. They play important roles in various inflammatory diseases, including rheumatoid arthritis and inflammatory bowel disease. MAIT cells express a single T cell receptor alpha chain, TCRα7.2 segment associated with Jα33 and CDR3 with fixed length, which recognizes bacteria-derived vitamin B metabolites. However, the characteristics of MAIT cells and TCRα7.2+ CD161- T cells have never been compared. Here, we performed RNA sequencing to compare the properties of MAIT cells, TCRα7.2- conventional T cells and TCRα7.2+ CD161- T cells. Genome-wide transcriptomes of MAIT cells, TCRα7.2- conventional T cells, and TCRα7.2+ CD161- T cells were compared and analyzed using causal network analysis. This is the first report comparing the transcriptomes of MAIT cells, TCRα7.2- conventional T cells and TCRα7.2+ CD161- T cells. We also identified the predominant signaling pathways of MAIT cells, which differed from those of TCRα7.2- conventional T cells and TCRα7.2+ CD161- T cells, through a gene set enrichment test and upstream regulator analysis and identified the genes responsible for the characteristic MAIT cell phenotypes. Our study advances the complete understanding of MAIT biology.


Subject(s)
Arthritis, Rheumatoid/immunology , Mucosal-Associated Invariant T Cells/immunology , NK Cell Lectin-Like Receptor Subfamily B/metabolism , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Transcriptome , Blood Donors , Gene Regulatory Networks , Humans , Immunogenetics/methods , Killer Cells, Natural/metabolism , Phenotype , RNA-Seq/methods , Th17 Cells/immunology , Th17 Cells/metabolism , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...