Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36903073

ABSTRACT

This study deals with the effect of fly ash and recycled sand on the flexural behavior of SFRCCs (steel fiber-reinforced cementitious composites)-filled steel tubes. As a result of the compressive test, the elastic modulus was reduced by the addition of micro steel fiber, and the fly ash and recycled sand replacement decreased the elastic modulus and increased the Poisson's ratio. As a result of the bending and direct tensile tests, strength enhancement by the incorporation of micro steel fibers was observed, and a smooth descending curve was confirmed after initial cracking. As a result of the flexural test on the FRCC-filled steel tube, the peak load of all specimens was similar, and the applicability of the equation presented by AISC was high. The deformation capacity of the steel tube filled with SFRCCs was slightly improved. As the elastic modulus of the FRCC material lowered and the Poisson's ratio increased, the denting depth of the test specimen deepened. This is believed to be due to the large deformation of the cementitious composite material under local pressure due to the low elastic modulus. From the results of the deformation capacities of the FRCC-filled steel tubes, it was confirmed that the contribution of indentation to the energy dissipation capacity of steel tubes filled with SFRCCs was high. From the comparison of the strain values of the steel tubes, in the steel tube filled with SFRCC incorporating recycled materials, the damage was properly distributed between the loading point and both ends through crack dispersion, and consequently, rapid curvature changes did not occur at both ends.

2.
Materials (Basel) ; 12(7)2019 Mar 28.
Article in English | MEDLINE | ID: mdl-30925830

ABSTRACT

The present study intended to find a way to use TiO2, one of the most widely used photocatalysts, as a construction material. To that end, nano-SiO2/Al2O3-TiO2 powder (NTCP) was synthesized by coating SiO2 and Al2O3 support materials with TiO2. The NTCP was anatase phase spherical particles, specific surface areas were 319 m²/g and 267 m²/g for the SiO2-TiO2 powder and Al2O3-TiO2 powder. UV absorption test results showed the developed NTCP had a light absorption peak at wavelengths of 380 nm or below, and its absorbance was much larger than that of commercial TiO2. The NTCP formed smaller pores on the surface than commercial TiO2. As a result, the flow of the mortar decreased as the adsorption strength increased and combined a large number of water molecules. In addition, the Pozzolanic reaction by SiO2 and Al2O3 used as support materials produced many calcium silicate hydrate (C-S-H) and calcium aluminate hydrate (C-A-H). This has shown an increased strength of mortar mixed with the NTCP by promoting a nucleation effect and reducing the filling effect and the number of harmful holes in the mortar.

3.
Materials (Basel) ; 10(9)2017 Sep 14.
Article in English | MEDLINE | ID: mdl-28906441

ABSTRACT

In order to assess the bond behavior of deformed steel rebars in recycled-aggregate concrete (RAC) incorporating both fine and coarse recycled aggregate, pull-out tests were carried out in this study on 16-mm diameter deformed steel rebars embedded concentrically in RAC. The concrete was designed using equivalently mixed proportions of both recycled coarse aggregate and recycled fine aggregate. The tests employed five types of recycled aggregate replacement combinations and three types of rebar placement orientation (i.e., vertical bars and two-tiered and three-tiered horizontal bars). Based on the pull-out test results, the maximum bond strength tended to decrease and the slip at the maximum bond strength increased as the average water absorption of the aggregate increased, irrespective of the rebar orientation or placement location within the concrete member. The pull-out test results for the horizontal steel rebars embedded in RAC indicate that the casting position effect could be determined from the mid-depth of the concrete member, irrespective of the member's height. The normalized bond versus slip relationship between the deformed rebar and the RAC could be predicted using an empirical model based on regression analysis of the experimental data.

4.
Materials (Basel) ; 7(2): 1422-1440, 2014 Feb 24.
Article in English | MEDLINE | ID: mdl-28788522

ABSTRACT

This paper provides experimental results to investigate the mechanical properties of sustainable strain-hardening cement composite (2SHCC) for infrastructures after freeze-thaw actions. To improve the sustainability of SHCC materials in this study, high energy-consumptive components-silica sand, cement, and polyvinyl alcohol (PVA) fibers-in the conventional SHCC materials are partially replaced with recycled materials such as recycled sand, fly ash, and polyethylene terephthalate (PET) fibers, respectively. To investigate the mechanical properties of green SHCC that contains recycled materials, the cement, PVA fiber and silica sand were replaced with 10% fly ash, 25% PET fiber, and 10% recycled aggregate based on preliminary experimental results for the development of 2SHCC material, respectively. The dynamic modulus of elasticity and weight for 2SHCC material were measured at every 30 cycles of freeze-thaw. The effects of freeze-thaw cycles on the mechanical properties of sustainable SHCC are evaluated by conducting compressive tests, four-point flexural tests, direct tensile tests and prism splitting tests after 90, 180, and 300 cycles of rapid freeze-thaw. Freeze-thaw testing was conducted according to ASTM C 666 Procedure A. Test results show that after 300 cycles of freezing and thawing actions, the dynamic modulus of elasticity and mass loss of damaged 2SHCC were similar to those of virgin 2SHCC, while the freeze-thaw cycles influence mechanical properties of the 2SHCC material except for compressive behavior.

SELECTION OF CITATIONS
SEARCH DETAIL
...