Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 14(11): 14971-14988, 2020 11 24.
Article in English | MEDLINE | ID: mdl-32880442

ABSTRACT

The liver is one of the most common sites of breast cancer metastasis and is associated with high lethality. Although the interaction between tumor cells and their microenvironment at metastatic sites has been recognized as a key regulator of tumor progression, the underlying mechanism is not fully elucidated. Here, we describe a three-dimensional (3D) microfluidic human liver-on-a-chip (liver-chip) that emulates the formation of a premetastatic niche to investigate the roles of breast cancer-derived extracellular vesicles (EVs) in liver metastasis. We demonstrate that breast cancer-derived EVs activate liver sinusoidal endothelial cells (LSECs) in the liver-chip, inducing endothelial to mesenchymal transition and destruction of vessel barriers. In addition, we show that transforming growth factor ß1 (TGFß1) in breast cancer-derived EVs upregulates fibronectin, an adhesive extracellular matrix protein, on LSECs, which facilitates the adhesion of breast cancer cells to the liver microenvironment. Furthermore, we observed that EVs isolated from triple-negative breast cancer (TNBC) patients with liver metastasis contain higher TGFß1 levels and induce adhesion of more breast cancer cells to the 3D human liver-chip than do EVs isolated from healthy donors or nonmetastatic TNBC patients. These findings provide a better understanding of the mechanisms through which breast cancer-derived EVs guide secondary metastasis to the liver. Furthermore, the 3D human liver-chip described in this study provides a platform to investigate the mechanisms underlying secondary metastasis to the liver and possible therapeutic strategies.


Subject(s)
Extracellular Vesicles , Liver , Triple Negative Breast Neoplasms , Endothelial Cells , Humans , Lab-On-A-Chip Devices , Liver/physiology , Oligonucleotide Array Sequence Analysis , Tumor Microenvironment
2.
Nano Lett ; 20(1): 441-448, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31763856

ABSTRACT

Near-field electrospinning (NFES) was developed to overcome the intrinsic instability of traditional electrospinning processes and to facilitate the controllable deposition of nanofibers under a reduced electric field. This technique offers a straightforward and versatile method for the precision patterning of two-dimensional (2D) nanofibers. However, three-dimensional (3D) stacked structures built by NFES have been limited to either micron-scale sizes or special shapes. Herein, we report on a direct-write 3D NFES technique to construct self-aligned, template-free, 3D stacked nanoarchitectures by simply adding salt to the polymer solution. Numerical simulations suggested that the electric field could be tuned to achieve self-aligned nanofibers by adjusting the conductivity of the polymer solution. This was confirmed experimentally by using poly(ethylene oxide) (PEO) solutions containing 0.1-1.0 wt% NaCl. Using 0.1 wt% NaCl, nanowalls with a maximum of 80 layers could be built with a width of 92 ± 3 nm, height of 6.6 ± 0.1 µm, and aspect ratio (height/width) of 72. We demonstrate the 3D printing of nanoskyscrapers with various designs, such as curved "nanowall arrays", nano "jungle gyms," and "nanobridges". Further, we present an application of the 3D stacked nanofiber arrays by preparing transparent and flexible polydimethylsiloxane films embedded with Ag-sputtered nanowalls as 3D nanoelectrodes. The conductivity of the nanoelectrodes can be precisely tuned by adjusting the number of 3D printed layers, without sacrificing transmittance (98.5%). The current NFES approach provides a simple, reliable route to build 3D stacked nanoarchitectures with high-aspect ratios for potential application in smart materials, energy devices, and biomedical applications.

3.
RSC Adv ; 8(35): 19651-19658, 2018 May 25.
Article in English | MEDLINE | ID: mdl-35540964

ABSTRACT

Nanofluidic channels have received growing interest due to their potential for applications in the manipulation of nanometric objects, such as DNA, proteins, viruses, exosomes, and nanoparticles. Although significant advances in nanolithography-based fabrication techniques over the past few decades have allowed us to explore novel nanofluidic transport phenomena and unique applications, the development of new technologies enabling the low-cost preparation of nanochannels with controllable and reproducible shapes and dimensions is still lacking. Thus, we herein report the application of a nanofiber printed using a near-field electrospinning method as a sacrificial mold for the preparation of polydimethylsiloxane nanochannels with circular cross sections. Control of the size and shape of these nanochannels allowed the preparation of nanochannels with channel widths ranging from 70-368 nm and height-to-width ratios of 0.19-1.00. Capillary filling tests confirmed the excellent uniformity and reproducibility of the nanochannels. These results therefore are expected to inspire novel nanofluidic studies due to the simple and low-cost nature of this fabrication process, which allows precise control of the shape and dimensions of the circular cross section.

4.
J Vis Exp ; (110)2016 04 16.
Article in English | MEDLINE | ID: mdl-27167836

ABSTRACT

Enzyme-linked immunosorbent assay (ELISA) is a promising method to detect small amount of proteins in biological samples. The devices providing a platform for reduced sample volume and assay time as well as full automation are required for potential use in point-of-care-diagnostics. Recently, we have demonstrated ultrasensitive detection of serum proteins, C-reactive protein (CRP) and cardiac troponin I (cTnI), utilizing a lab-on-a-disc composed of TiO2 nanofibrous (NF) mats. It showed a large dynamic range with femto molar (fM) detection sensitivity, from a small volume of whole blood in 30 min. The device consists of several components for blood separation, metering, mixing, and washing that are automated for improved sensitivity from low sample volumes. Here, in the video demonstration, we show the experimental protocols and know-how for the fabrication of NFs as well as the disc, their integration and the operation in the following order: processes for preparing TiO2 NF mat; transfer-printing of TiO2 NF mat onto the disc; surface modification for immune-reactions, disc assembly and operation; on-disc detection and representative results for immunoassay. Use of this device enables multiplexed analysis with minimal consumption of samples and reagents. Given the advantages, the device should find use in a wide variety of applications, and prove beneficial in facilitating the analysis of low abundant proteins.


Subject(s)
C-Reactive Protein/isolation & purification , Microfluidic Analytical Techniques/methods , Troponin I/isolation & purification , Biomarkers/blood , C-Reactive Protein/analysis , Enzyme-Linked Immunosorbent Assay/methods , Lab-On-A-Chip Devices , Microfluidic Analytical Techniques/instrumentation , Troponin I/blood
5.
Lab Chip ; 15(2): 478-85, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25407164

ABSTRACT

ELISA-based devices are promising tools for the detection of low abundant proteins in biological samples. Reductions of the sample volume and assay time as well as full automation are required for their potential use in point-of-care diagnostic applications. Here, we present a highly efficient lab-on-a-disc composed of a TiO2 nanofibrous mat for sensitive detection of serum proteins with a broad dynamic range, with only 10 µL of whole blood within 30 min. The TiO2 nanofibers provide high specific surface area as well as active functional groups to capture large amounts of antibodies on the surface. In addition, the device offers efficient mixing and washing for improving the signal-to-noise ratio, thus enhancing the overall detection sensitivity. We employ the device for the detection of cardiac biomarkers, C-reactive protein (CRP) and cardiac troponin I (cTnI), spiked in phosphate-buffered saline (PBS) as well as in serum or whole blood. The device exhibited a wide dynamic range of six orders of magnitude from 1 pg mL(-1) (~8 fM) to 100 ng mL(-1) (~0.8 pM) and a low detection limit of 0.8 pg mL(-1) (~6 fM) for CRP spiked in CRP-free serum and a dynamic range of 10 pg mL(-1) (~0.4 pM) to 100 ng mL(-1) (~4 nM) with a detection limit of 37 pg mL(-1) (~1.5 pM) for cTnI spiked in whole blood.


Subject(s)
C-Reactive Protein/analysis , Enzyme-Linked Immunosorbent Assay/methods , Nanofibers/chemistry , Titanium/chemistry , Troponin I/blood , Biomarkers/blood , Enzyme-Linked Immunosorbent Assay/instrumentation , Heart Diseases/diagnosis , Humans , Lab-On-A-Chip Devices
6.
Analyst ; 140(2): 616-22, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25426595

ABSTRACT

Recently, there has been increased interest in electrospun-titanium dioxide nanofibers (TiO2 NFs) as antibacterial agents owing to their advantages, such as simple and cost-effective fabrication processes, and high surface areas. However, the photocatalytic effects of TiO2 NFs are relatively low because of their low-ordered crystalline structure, and the antibacterial effect is only effective under UV illumination owing to their large band-gap energy. In this paper, we have demonstrated a significantly enhanced antibacterial activity of hierarchical anatase TiO2 NFs against Staphylococcus aureus in the presence of UV light. Furthermore, the uniform deposition of a large quantity of Ag nanoparticles on the surface of the TiO2 NFs ensured a significant enhancement of the antibacterial performance, even under dark conditions. These results were obtained by exploiting the enhanced photocatalytic effect achieved through control of the crystallinity, as well as the enhanced surface area of the nanomaterials.


Subject(s)
Anti-Bacterial Agents/pharmacology , Metal Nanoparticles/chemistry , Nanofibers/chemistry , Staphylococcus aureus/drug effects , Titanium/pharmacology , Microbial Sensitivity Tests , Silver/chemistry , Staphylococcus aureus/radiation effects , Ultraviolet Rays
7.
ACS Appl Mater Interfaces ; 6(15): 12189-95, 2014 Aug 13.
Article in English | MEDLINE | ID: mdl-25010666

ABSTRACT

Photoelectrochemical sensors based on hierarchically structured titanium dioxide (TiO2) nanofibers (NFs) were fabricated by combination of electrospinning, carbon microelectromechanical systems (MEMS), and hydrothermal reaction. During the electrospinning step, a rotating drum collector was used to align and position NFs of titanium tetraisopropoxide (TTIP) in polyvinylpyrrolidone (PVP) on top of a carbon-MEMS structure. Following calcination under vacuum, a stable ohmic contact was obtained between suspended TiO2-carbon NFs (TiO2/C NF) and the carbon electrodes. Subsequent to this, a hierarchical nanostructure of TiO2 nanowires (TiO2 NWs) was hydrothermally synthesized onto the TiO2/C NFs and successfully utilized as UV and pH sensors. This is the first demonstration of a semiconductor-based nanofiber sensor suspended on carbon electrodes that has been achieved by a relatively simple and cost-effective electrospinning method. Furthermore, these sensors demonstrate a high sensitivity, as well as a stable ohmic contact, due to the large surface area of the TiO2 NWs and the carbon-carbon contact between the suspended TiO2/C NFs and carbon electrodes.

SELECTION OF CITATIONS
SEARCH DETAIL
...