Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(6): e27641, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38500971

ABSTRACT

Feline Coronavirus (FCoV) is a viral pathogen of cats and a highly contagious virus. Cats in a cattery can be infected by up to 100%, and even household cats are infected by 20-60%. Some strains of FCoV are known to induce a fatal disease in cats named Feline Infectious Peritonitis (FIP). However, no effective treatments are available. We demonstrated that compound C (dorsomorphin) can potentially inhibit feline coronavirus replication. Compound C treatment decreased the FCoV-induced plaque formation and cytopathic effect in FCoV-infected cells. Compound C treatment also significantly reduced the amount of viral RNA and viral protein in the cells in a dose-dependent manner. Our findings suggest that compound C is potentially useful for feline coronavirus-related diseases.

2.
PLoS One ; 18(10): e0292309, 2023.
Article in English | MEDLINE | ID: mdl-37788269

ABSTRACT

The coronavirus disease (COVID-19) pandemic has resulted in more than six million deaths by October 2022. Vaccines and antivirals for severe acute respiratory syndrome coronavirus 2 are now available; however, more effective antiviral drugs are required for effective treatment. Here, we report that a potent AMP-activated protein kinase (AMPK) inhibitor, compound C/dorsomorphin, inhibits the replication of the human coronavirus OC43 strain (HCoV-OC43). We examined HCoV-OC43 replication in control and AMPK-knockout (KO) cells and found that the virus replication decreased in AMPK-KO cells. Next, we examined the effect of the AMPK inhibitor, compound C on coronavirus replication. Compound C treatment efficiently inhibited the replication and decreased the coronavirus-induced cytotoxicity, further inhibiting autophagy. In addition, treatment with compound C in combination with chloroquine synergistically inhibited coronavirus replication. These results suggest that compound C can be considered as a potential drug candidate for COVID-19.


Subject(s)
Antiviral Agents , Coronavirus OC43, Human , Humans , AMP-Activated Protein Kinases/antagonists & inhibitors , Antiviral Agents/pharmacology , Coronavirus OC43, Human/drug effects , Pyrazoles/pharmacology , Virus Replication/drug effects
3.
J Enzyme Inhib Med Chem ; 38(1): 2242704, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37537881

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). 3CLpro is a key enzyme in coronavirus proliferation and a treatment target for COVID-19. In vitro and in silico, compounds 1-3 from Glycyrrhiza uralensis had inhibitory activity and binding affinity for 3CLpro. These compounds decreased HCoV-OC43 cytotoxicity in RD cells. Moreover, they inhibited viral growth by reducing the amounts of the necessary proteins (M, N, and RDRP). Therefore, compounds 1-3 are inhibitors of 3CLpro and HCoV-OC43 proliferation.


Subject(s)
Coronavirus 3C Proteases , Coronavirus OC43, Human , Glycyrrhiza uralensis , Cell Proliferation , Coronavirus OC43, Human/drug effects , Glycyrrhiza uralensis/chemistry , SARS-CoV-2 , Coronavirus 3C Proteases/antagonists & inhibitors
4.
Int J Mol Sci ; 24(11)2023 May 24.
Article in English | MEDLINE | ID: mdl-37298159

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has caused more than six million deaths worldwide since 2019. Although vaccines are available, novel variants of coronavirus are expected to appear continuously, and there is a need for a more effective remedy for coronavirus disease. In this report, we isolated eupatin from Inula japonica flowers and showed that it inhibits the coronavirus 3 chymotrypsin-like (3CL) protease as well as viral replication. We showed that eupatin treatment inhibits SARS-CoV-2 3CL-protease, and computational modeling demonstrated that it interacts with key residues of 3CL-protease. Further, the treatment decreased the number of plaques formed by human coronavirus OC43 (HCoV-OC43) infection and decreased viral protein and RNA levels in the media. These results indicate that eupatin inhibits coronavirus replication.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Peptide Hydrolases , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Flavonoids/pharmacology , Endopeptidases , Antiviral Agents/pharmacology
5.
Int J Biol Macromol ; 222(Pt B): 2098-2104, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36208809

ABSTRACT

In our ongoing efforts to identify effective natural antiviral agents, four methoxy flavonoids (1-4) were isolated from the Inula britannica flower extract. Their structures were elucidated using nuclear magnetic resonance. Flavonoids 1-4 exhibited inhibitory activity against SARS- CoV-2 3CLpro with IC50 values of 41.6 ± 2.5, 35.9 ± 0.9, 32.8 ± 1.2, and 96.6 ± 3.4 µM, respectively. Flavonoids 1-3 inhibited 3CLpro in a competitive manner. Based on molecular simulations, key amino acids that form hydrogen bond with inhibitor 3 were identified. Finally, we found that inhibitors (1-3) suppressed HCoV-OC43 coronavirus proliferation at micromole concentrations.


Subject(s)
COVID-19 , Inula , SARS-CoV-2 , Inula/chemistry , Flavonoids/pharmacology , Flavonoids/chemistry , Flowers , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
6.
Cancers (Basel) ; 14(18)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36139655

ABSTRACT

C1q and TNF-related 1 (C1QTNF1/CTRP1) is an adiponectin-associated protein belonging to the C1q/TNF-related protein family. Recent studies have shown that the C1q and TNF-related protein (CTRP) family is involved in cancer progression; however, the specific role of CTRP1 in tumor progression has not yet been elucidated. To examine the role of CTRP1 in tumor progression, we generated CTRP1 knockout A549 and HCT116 cell lines, which reduced the expression levels of nuclear factor (NF)-κB-dependent and metastasis-promoting transcripts. We demonstrated that CTRP1 knockout inhibited the cell proliferation and invasion and tumor growth. Finally, database analysis showed that CTRP1 expression was upregulated in metastatic cancers and elevated levels of CTRP1 were associated with poor prognosis. These results suggest that CTRP1 expression contributes to NF-κB signaling and promotes tumor progression.

7.
J Microbiol ; 60(3): 347-354, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35089586

ABSTRACT

Coronavirus disease (COVID-19) can cause critical conditions that require efficient therapeutics. Several medicines are derived from plants, and researchers are seeking natural compounds to ameliorate the symptoms of COVID-19. Viral enzymes are popular targets of antiviral medicines; the genome of coronaviruses encodes several enzymes, including RNA-dependent RNA polymerase and viral proteases. Various screening systems have been developed to identify potential inhibitors. In this review, we describe the natural compounds that have been shown to exert inhibitory effects on coronavirus enzymes. Although computer-aided molecular structural studies have predicted several antiviral compound candidates, the current review focuses on experimentally proven natural compounds.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Enzyme Inhibitors , Phytochemicals/pharmacology , Enzyme Inhibitors/pharmacology , Humans , RNA-Dependent RNA Polymerase/antagonists & inhibitors , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology
8.
Viruses ; 13(12)2021 12 17.
Article in English | MEDLINE | ID: mdl-34960802

ABSTRACT

The COVID-19 pandemic has resulted in a huge number of deaths from 2020 to 2021; however, effective antiviral drugs against SARS-CoV-2 are currently under development. Recent studies have demonstrated that green tea polyphenols, particularly EGCG, inhibit coronavirus enzymes as well as coronavirus replication in vitro. Herein, we examined the inhibitory effect of green tea polyphenols on coronavirus replication in a mouse model. We used epigallocatechin gallate (EGCG) and green tea polyphenols containing more than 60% catechin (GTP60) and human coronavirus OC43 (HCoV-OC43) as a surrogate for SARS-CoV-2. Scanning electron microscopy analysis results showed that HCoV-OC43 infection resulted in virion particle production in infected cells. EGCG and GTP60 treatment reduced coronavirus protein and virus production in the cells. Finally, EGCG- and GTP60-fed mice exhibited reduced levels of coronavirus RNA in mouse lungs. These results demonstrate that green tea polyphenol treatment is effective in decreasing the level of coronavirus in vivo.


Subject(s)
Antiviral Agents/pharmacology , Catechin/analogs & derivatives , Coronavirus Infections/drug therapy , Polyphenols/pharmacology , Tea/chemistry , Virus Replication/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Catechin/pharmacology , Catechin/therapeutic use , Cell Line , Coronavirus Infections/virology , Coronavirus OC43, Human/drug effects , Coronavirus OC43, Human/physiology , Disease Models, Animal , Humans , Mice , Polyphenols/chemistry , Polyphenols/therapeutic use
9.
Cancers (Basel) ; 13(16)2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34439220

ABSTRACT

The ligand of numb-protein X1 (LNX1) acts as a proto-oncogene by inhibiting p53 stability; however, the regulation of LNX1 expression has not been investigated. In this study, we screened chemicals to identify factors that potentially regulate LNX1 expression. We found that LNX1 expression levels were decreased by DNA damage, including that by cisplatin. Upon treatment with lipopolysaccharide (LPS) and phorbol 12-myristate 13-acetate (PMA), LNX1 expression levels increased. In addition, cell-cycle progression increased upon LNX1 expression; the levels of S and G2/M populations were correlated with LNX1 expression. Moreover, in CRISPR-Cas9-mediated LNX1 knockout cells, we observed a delay in cell-cycle progression and a downregulation of genes encoding the cell-cycle markers cyclin D1 and cyclin E1. Finally, the upregulation of LNX1-activated cell-cycle progression and increased resistance to cisplatin-mediated cell death. Taken together, these results suggest that LNX1 contributes to cell-cycle progression and cisplatin resistance.

10.
Cancers (Basel) ; 13(14)2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34298831

ABSTRACT

Mounting evidence supports the relationship between obesity and cancer. However, the molecular mechanisms linking obesity with cancer remain largely uninvestigated. In this study, we demonstrate that the expression of C1q/TNF-related protein 1 (CTRP1), an adiponectin paralogue, contributes to tumor growth by regulating the tumor suppressor p53. In our study, obese mice on a high-fat diet showed higher serum CTRP1 levels. Through in vitro experiments, we showed that the secreted form of CTRP1 in the culture medium decreased p53 expression and p53-dependent transcription in the cells. Moreover, CTRP1 treatment enhanced colony formation and cell migration. These results collectively suggest that elevated levels of CTRP1 in obesity significantly contribute to tumor progression.

11.
Int J Mol Sci ; 22(6)2021 Mar 14.
Article in English | MEDLINE | ID: mdl-33799444

ABSTRACT

6-Azauridine (6-AZA), a pyrimidine nucleoside analogue, is known to exhibit both antitumor and antiviral activities. Although 6-AZA was discovered more than 60 years ago, the cellular effects of this compound are yet to be elucidated. Here, we report that 6-AZA regulates autophagy-mediated cell death in various human cancer cells, where 6-AZA treatment activates autophagic flux through the activation of lysosomal function. Furthermore, 6-AZA exhibited cytotoxicity in all cancer cells studied, although the mechanisms of action were diverse. In H460 cells, 6-AZA treatment induced apoptosis, and the extent of the latter could be reduced by treatment with chloroquine (CQ), a lysosomal inhibitor. However, 6-AZA treatment resulted in cell cycle arrest in H1299 cells, which could not be reversed by CQ. The cytotoxicity associated with 6-AZA treatment could be linearly correlated to the degree of autophagy-mediated cell death. In addition, we demonstrated that the cytotoxic effect of 6-AZA was dependent on AMPK and p53. These results collectively indicate that autophagy-mediated cell death triggered by 6-AZA contributes to its antitumor effect.


Subject(s)
Azauridine/pharmacology , Chloroquine/pharmacology , Neoplasms/drug therapy , Protein Kinases/genetics , Tumor Suppressor Protein p53/genetics , AMP-Activated Protein Kinase Kinases , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Autophagic Cell Death/drug effects , Autophagy/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Synergism , Humans , Lysosomes/drug effects , Neoplasms/genetics , Neoplasms/pathology , Signal Transduction/drug effects
12.
Life (Basel) ; 11(3)2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33806274

ABSTRACT

Epigallocatechin gallate (EGCG) is a major catechin found in green tea, and there is mounting evidence that EGCG is potentially useful for the treatment of coronavirus diseases, including coronavirus disease 2019 (COVID-19). Coronaviruses encode polyproteins that are cleaved by 3CL protease (the main protease) for maturation. Therefore, 3CL protease is regarded as the main target of antivirals against coronaviruses. EGCG is a major constituent of brewed green tea, and several studies have reported that EGCG inhibits the enzymatic activity of the coronavirus 3CL protease. Moreover, EGCG has been reported to regulate other potential targets, such as RNA-dependent RNA polymerase and the viral spike protein. Finally, recent studies have demonstrated that EGCG treatment interferes with the replication of coronavirus. In addition, the bioavailability of EGCG and future research prospects are discussed.

13.
Biochem Biophys Res Commun ; 547: 23-28, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33588235

ABSTRACT

COVID-19 pandemic results in record high deaths in many countries. Although a vaccine for SARS-CoV-2 is now available, effective antiviral drugs to treat coronavirus diseases are not available yet. Recently, EGCG, a green tea polyphenol, was reported to inhibit SARS-CoV-2 3CL-protease, however the effect of EGCG on coronavirus replication is unknown. In this report, human coronavirus HCoV-OC43 (beta coronavirus) and HCoV-229E (alpha coronavirus) were used to examine the effect of EGCG on coronavirus. EGCG treatment decreases 3CL-protease activity of HCoV-OC43 and HCoV-229E. Moreover, EGCG treatment decreased HCoV-OC43-induced cytotoxicity. Finally, we found that EGCG treatment decreased the levels of coronavirus RNA and protein in infected cell media. These results indicate that EGCG inhibits coronavirus replication.


Subject(s)
Coronavirus 229E, Human/drug effects , Coronavirus OC43, Human/drug effects , Polyphenols/pharmacology , Tea/chemistry , Virus Replication/drug effects , Amino Acid Sequence , Cell Line, Tumor , Coronavirus 229E, Human/physiology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus OC43, Human/physiology , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/physiology
14.
Article in English | MEDLINE | ID: mdl-32963564

ABSTRACT

COVID-19, a global pandemic, has caused over 750,000 deaths worldwide as of August 2020. A vaccine or remedy for SARS-CoV-2, the virus responsible for COVID-19, is necessary to slow down the spread and lethality of COVID-19. However, there is currently no effective treatment available against SARS-CoV-2. In this report, we demonstrated that EGCG and theaflavin, the main active ingredients of green tea and black tea, respectively, are potentially effective to inhibit SARS-CoV-2 activity. Coronaviruses require the 3CL-protease for the cleavage of its polyprotein to make individual proteins functional. EGCG and theaflavin showed inhibitory activity against the SARS-CoV-2 3CL-protease in a dose-dependent manner, and the half inhibitory concentration (IC50) was 7.58 µg/ml for EGCG and 8.44 µg/ml for theaflavin. In addition, we did not observe any cytotoxicity for either EGCG or theaflavin at the concentrations tested up to 40 µg/ml in HEK293T cells. These results suggest that upon further study, EGCG and theaflavin can be potentially useful to treat COVID-19.

15.
J Microbiol Biotechnol ; 30(7): 1044-1050, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32160700

ABSTRACT

Abelmoschus manihot (Linn.) is a medicinal herbal plant that is commonly used to treat chronic kidney disease and hepatitis. However, its effect on cell proliferation has not been clearly revealed. In this report, we sought to determine the effect of the flower extract of A. manihot (FA) on cell proliferation. Based on our findings, FA increased the proliferation of human diploid fibroblast (HDF) and HEK293 cells. Through cell cycle analysis, FA was found to increase the number of HDF cells in the S phase and G2/M phase. FA also increased the expression of cyclin D1 and enhanced the migration of HDF cells. By administering FA to HDF cells with ≥30 passages, a decrease in the number of senescence-associated ß galactosidase-positive cells was observed, thereby indicating that FA can ameliorate cellular senescence. Collectively, our findings indicate that FA increases cyclin D1 expression and regulates cell proliferation.


Subject(s)
Abelmoschus/chemistry , Cell Proliferation/drug effects , Cyclin D1/metabolism , Flowers/chemistry , Plant Extracts/pharmacology , Cell Movement/drug effects , Cellular Senescence , G2 Phase/drug effects , HEK293 Cells , Humans , S Phase/drug effects
16.
FASEB J ; 33(12): 13216-13227, 2019 12.
Article in English | MEDLINE | ID: mdl-31533005

ABSTRACT

The well-known tumor suppressor p53 inhibits the formation of various cancers by inducing cell cycle arrest and apoptosis. Although p53 mutations are commonly found in many cancers, p53 is functionally inactivated in tumor cells that retain wild-type p53. Here, we show that the ligand of numb protein X1 (LNX1) inhibited p53-dependent transcription by decreasing the half-life of p53. We generated LNX1 knockout (KO) cells in p53 wild-type cancer cells (A549, HCT116, and MCF7) using the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 gene-editing system. LNX1 KO activated p53-dependent transcription by increasing the stability of p53. Moreover, lentivirus-mediated overexpression of LNX1 decreased p53 protein levels and inhibited p53-dependent transcription. LNX1 interacted with p53 and mouse double minute 2 (MDM2) and increased the ubiquitination of p53 in an MDM2-dependent manner. Finally, we demonstrated that LNX1 was required for efficient tumor growth both in cell culture and in a mouse tumor xenograft model. These results collectively indicated that LNX1 contributed to tumor growth by inhibiting p53-dependent signaling in p53 wild-type cancer cells.-Park, R., Kim, H., Jang, M., Jo, D., Park, Y.-I., Namkoong, S., Lee, J. I., Jang, I.-S., Park, J. LNX1 contributes to tumor growth by down-regulating p53 stability.


Subject(s)
Tumor Suppressor Protein p53/metabolism , Ubiquitin-Protein Ligases/metabolism , A549 Cells , Animals , Cell Proliferation/genetics , Cell Proliferation/physiology , HCT116 Cells , Humans , MCF-7 Cells , Mice , Mice, Inbred BALB C , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Tumor Suppressor Protein p53/genetics , Ubiquitin-Protein Ligases/genetics , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...