Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chromosome Res ; 16(8): 1075-84, 2008.
Article in English | MEDLINE | ID: mdl-18937039

ABSTRACT

Human embryonic stem cells (hESCs) are pluripotent and hold great promise as useful tools in basic scientific research and in the field of regenerative medicine. However, several studies have recently reported chromosomal abnormalities such as gains of chromosomes 12, 17 and X in hESCs. This genetic instability presents an obstacle in the application of hESCs as sources of cell therapies. We found that trisomy 12 was correlated with changes in hESC colony morphology during hESC maintenance. In this study, we investigated whether normal and trisomy 12 cells could be separated in hESC cultures displaying trisomy 12 mosaicism with two types of colony morphology using a mechanical transfer technique. Eight sublines were cultured from eight hESC colonies displaying normal or abnormal morphology. Four sublines with normal morphology had normal chromosome 12 numbers, whereas the four sublines with abnormal morphology displayed trisomy 12. These results indicate that a hESC colony with a minor degree of chromosomal mosaicism and normal morphology could proceed to a colony with normal chromosomes after prolonged cultures with mechanical transfer. Therefore, analysis of cultures for chromosomal abnormalities when changes in colony morphology are observed during culture is essential for maintaining normal hESC lines.


Subject(s)
Cell Separation/methods , Cell- and Tissue-Based Therapy/methods , Chromosomes, Human, Pair 12/genetics , Embryonic Stem Cells/cytology , Mosaicism , Trisomy , Alkaline Phosphatase/metabolism , Cell Line , Humans , In Situ Hybridization, Fluorescence , Karyotyping
2.
Exp Mol Med ; 40(1): 98-108, 2008 Feb 29.
Article in English | MEDLINE | ID: mdl-18305403

ABSTRACT

Human embryonic stem cells (hESCs) are considered to be able to stably maintain their characteristics in vitro for prolonged periods, but we had previously encountered changes in proliferative ability and differentiation potential during extended culture of hESCs. Therefore, we investigated the proliferative ability and differentiation potential of hESCs during long-term culture. The hESCs, SNUhES3, were used to analyze population-doubling time, proliferation rate and differentiation potential. We classified hESCs into three groups according to culture period. Ten colonies of hESCs for each group were daily measured colony area and population-doubling time was assessed by the changes of colony area. Proliferation rate of hESCs was measured by 5-bromo-2'-deoxyuridine (BrdU) assay and telomerase activity. To evaluate differentiation potentials for hESCs, expression levels of undifferentiated and/or differentiated hESCs markers were examined by FACS, RT-PCR and immunostaining. Population-doubling time of early passage hESCs was longer than those of middle or late passage. Proliferative ability of hESCs was accelerated depending on culture periods. Cellular morphologies and the expression level of each three germ layer markers were obviously different from each passage of reattached embryoid bodies (EBs) after spontaneous differentiation. Differentiated cells of late passage expressed higher levels of undifferentiated markers such as Oct4 and SSEA4 than those of early and middle passage. But differentiated cells of early and middle passage expressed higher level of differentiated state markers, Nestin (ectoderm), Brachyury (mesoderm), HNF3beta (endoderm). From these results, it can be inferred that hESCs show higher proliferative abilities and reduced differentiation potentials as the passage number increased. Therefore, we conclude that early passage hESCs could be more suitable than middle and late passage hESCs in differentiation studies.


Subject(s)
Cell Differentiation , Embryonic Stem Cells/cytology , Biomarkers/metabolism , Bromodeoxyuridine/metabolism , Cell Proliferation , Cells, Cultured , Cyclin D , Cyclins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Embryonic Stem Cells/enzymology , Flow Cytometry , Gene Expression Regulation , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Karyotyping , Nanog Homeobox Protein , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Telomerase/metabolism , Time Factors
3.
Mol Ther ; 13(1): 5-14, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16242999

ABSTRACT

Embryonic stem (ES) cells, derived from the inner cell mass of the mammalian blastocyst, can continuously proliferate in an undifferentiated state and can also be induced to differentiate into a desired cell lineage. These abilities make ES cells an appealing source for cell replacement therapies, the study of developmental biology, and drug/toxin screening studies. As compared to mouse ES cells, human ES cells have only recently been derived and studied. Although there are many differences in properties between mouse and human ES cells, the study of mouse ES cells has provided important insights into human ES cell research. In this review, we describe the advantages and disadvantages of methods used for human ES cell derivation, the expansion of human ES cells, and the current status of human ES cell differentiation research. In addition, we discuss the endeavor that scientists have undertaken toward the therapeutic application of these cells, which includes therapeutic cloning and the improvement of human ES cell culture conditions.


Subject(s)
Blastocyst/cytology , Cell Differentiation , Germ Layers/cytology , Stem Cells/cytology , Animals , Cell Lineage , Cells, Cultured , Genetic Therapy , Humans , Mice , Stem Cell Transplantation
4.
Stem Cells ; 23(9): 1228-33, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16051988

ABSTRACT

The expanded blastocysts, developed from 2PN-stage embryos, are generally divided into three categories: a good blastocyst containing a large and distinguishable inner cell mass (ICM), a blastocyst with a small and distinct ICM, and a blastocyst with a poorly defined ICM. In this study, we introduce methods for the derivation of human embryonic stem cells (hESCs) depending on the quality of the blastocysts. An immunosurgical method was used for the good expanded blastocysts. This method, however, raises the probability of ICM loss in cases of hESC derivation from blastocysts with smaller or indistinct ICMs. Furthermore, this method is also associated with a risk of the contamination of the hESCs with animal pathogens. To overcome these shortcomings, the partial- or whole-embryo culture method was used. For blastocysts with no visible ICM, the whole-embryo culture method was used to establish hESCs via the seeding of the entire blastocyst without its zona pellucida directly on a STO feeder layer. However, trophectodermal overgrowth tends to hinder the expansion of the ICM during the initial steps of hESC derivation. Therefore, the partial-embryo culture method was developed to establish hESCs from blastocysts with smaller ICMs. The surgical isolation of the region containing the ICM with an ultra-fine glass pipette alleviates trophectoderm overgrowth. This method is also applicable to blastocysts with large and distinct ICMs, and the efficiency of this method is comparable to that of the immunosurgical method.


Subject(s)
Blastocyst/cytology , Embryo Culture Techniques/methods , Pluripotent Stem Cells/cytology , Blastocyst/physiology , Cell Line , Culture Media , Embryo, Mammalian/cytology , Humans , Pluripotent Stem Cells/physiology
5.
Stem Cells ; 23(5): 605-9, 2005 May.
Article in English | MEDLINE | ID: mdl-15849167

ABSTRACT

The manipulation of human embryonic stem cells (hESCs) requires refined skills. Here we introduce both mechanical and enzymatic transfer methods for hESCs depending on experimental purpose. We use the mechanical transfer method for maintenance of hESC lines. Although the method is laborious and time-consuming, the technique permits efficient transfer of undifferentiated hESCs and results in similar clump sizes. We implement the enzymatic transfer method when we need the bulk production of cells for various experiments. The enzyme-treated expansion rapidly produces greater amounts of hESCs within a limited time frame. However, the cell clumps vary in size, and there is a probability that both the differentiated and undifferentiated cells will be transferred. In cases in which there are differentiated colonies, the combination of two methods allows mass production of hESCs by excluding differentiated colonies from passage by manual selection before enzyme treatment.


Subject(s)
Cell Culture Techniques/methods , Embryo, Mammalian/cytology , Stem Cells/cytology , Humans
6.
Stem Cells ; 23(2): 211-9, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15671144

ABSTRACT

Here we report the derivation and characterization of new human embryonic stem cell (hESC) lines, SNUhES1, SNUhES2, and SNUhES3. These cells, established from the inner cell mass using an STO feeder layer, satisfy the criteria that characterize pluripotent hESCs: The cell lines express high levels of alkaline phosphatase, cell surface markers (such as SSEA-3, SSEA-4, TRA-1-60, and TRA-1-81), transcription factor Oct-4, and telomerase. When grafted into severe combined immunodeficient mice after prolonged proliferation, these cells maintained the developmental potentials to form derivatives of all three embryonic germ layers. The cell lines have normal karyotypes and distinct identities, revealed from DNA fingerprinting. Interestingly, analysis by electron microscopy clearly shows the morphological difference between undifferentiated and differentiated hESCs. Undifferentiated hESCs have a high ratio of nucleus to cytoplasm, prominent nucleoli, indistinct cell membranes, free ribosomes, and small mitochondria with a few crista, whereas differentiated cells retain irregular nuclear morphology, desmosomes, extensive cytoplasmic membranes, tonofilaments, and highly developed cellular organelles such as Golgi complex with secretory vesicles, endoplasmic reticulum studded with ribosomes, and large mitochondria. Existence of desmosomes and tonofilaments indicates that these cells differentiated into epithelial cells. When in vitro differentiation potentials of these cell lines into cardiomyocytes were examined, SNUhES3 was found to differentiate into cardiomyocytes most effectively.


Subject(s)
Cell Differentiation/physiology , Cell Line/physiology , Membrane Proteins/analysis , Totipotent Stem Cells/physiology , Cell Line/ultrastructure , Humans , Membrane Proteins/metabolism , Myocytes, Cardiac/physiology , Myocytes, Cardiac/ultrastructure , Totipotent Stem Cells/ultrastructure
7.
Yonsei Med J ; 43(4): 482-90, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12205737

ABSTRACT

In our previous study, we demonstrated that immobilization stress blocked estrogen-induced luteinizing hormone (LH) surge possibly by inhibiting the synthesis and release of gonadotropin-releasing hormone (GnRH) at the hypothalamic level and by blocking estrogen-induced prolactin (PRL) surge by increasing the synthesis of dopamine receptor at the pituitary level in ovariectomized rats. The present study was performed to determine whether immobilization stress affects pituitary LH responsiveness to GnRH, and whether endogenous opioid peptide (EOP) and dopamine systems are involved in blocking LH and PRL surges during immobilization stress. Immobilization stress was found to inhibit basal LH release and to completely abolish LH surge. However, the intravenous application of GnRH agonist completely restored immobilization-blocked LH surge and basal LH release. Treatment with naloxone did not exert any effect on immobilization-blocked LH surge but increased basal LH release during immobilization stress. Pimozide did not affect immobilization-blocked LH surge or basal LH release. Naloxone also decreased immobilization-induced basal PRL release, but had no effect on immobilization-blocked PRL surge. Immobilization-increased basal PRL levels were augmented by pimozide treatment and immobilization-blocked PRL surge was dramatically restored by pimozide. We conclude that immobilization stress does not impair pituitary LH response to GnRH, and that the immobilization stress-induced blockage of LH surge is probably not mediated by either the opioidergic or the dopaminergic system. However, immobilization-blockade of PRL surge may be partly mediated by the dopaminergic system.


Subject(s)
Estradiol/pharmacology , Gonadotropin-Releasing Hormone/pharmacology , Luteinizing Hormone/metabolism , Prolactin/metabolism , Stress, Physiological/metabolism , Animals , Female , Immobilization , Naloxone/pharmacology , Opioid Peptides/physiology , Ovariectomy , Rats , Rats, Sprague-Dawley , Receptors, Dopamine/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...