Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci Technol ; 65(2): 293-310, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37093954

ABSTRACT

Protein-translated mRNA analysis has been extensively used to determine the function of various traits in animals. The non-coding RNA (ncRNA), which was known to be non-functional because it was not encoded as a protein, was re-examined as it was studied to actually function. One of the ncRNAs, long non-coding RNA (lncRNA), is known to have a function of regulating mRNA expression, and its importance is emerging. Therefore, lncRNAs are currently being used to understand the traits of various animals as well as human diseases. However, studies on lncRNA annotation and its functions are still lacking in most animals except humans and mice. lncRNAs have unique characteristics of lncRNAs and interact with mRNA through various mechanisms. In order to make lncRNA annotations in animals in the future, it is essential to understand the characteristics of lncRNAs and the mechanisms by which lncRNAs function. In addition, this will allow lncRNAs to be used for a wider variety of traits in a wider range of animals, and it is expected that integrated analysis using other biological information will be possible.

2.
Animals (Basel) ; 12(3)2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35158699

ABSTRACT

The porcine estrous cycle is influenced by reproductive hormones, which affect porcine reproduction and result in physiological changes in the reproductive organs. The ovary is involved in ovulation, luteinization, corpus luteum development, and luteolysis. Here, we aimed to provide a comprehensive understanding of the gene expression patterns in porcine ovarian transcriptomes during the estrous cycle through differentially expressed genes profiling and description of molecular mechanisms. The transcriptomes of porcine ovary were obtained during the estrous cycle at three-day intervals from day 0 to day 18 using RNA-seq. At seven time points of the estrous cycle, 4414 DEG were identified; these were classified into three clusters according to their expression patterns. During the late metestrus and diestrus periods, the expression in cluster 1 increased rapidly, and steroid biosynthesis was significant in the pathway. Cluster 2 gene expression patterns represented the cytokine-cytokine receptor interaction in significant pathways. In cluster 3, the hedgehog signaling pathway was selected as the significant pathway. Our study exhibited dynamic gene expression changes with these three different patterns of cluster 1, 2, and 3. The results helped identify the functions and related significant genes especially during the late metestrus and diestrus periods in the estrous cycle.

SELECTION OF CITATIONS
SEARCH DETAIL
...