Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 241
Filter
1.
Nature ; 629(8010): 165-173, 2024 May.
Article in English | MEDLINE | ID: mdl-38632398

ABSTRACT

Streptomyces are a genus of ubiquitous soil bacteria from which the majority of clinically utilized antibiotics derive1. The production of these antibacterial molecules reflects the relentless competition Streptomyces engage in with other bacteria, including other Streptomyces species1,2. Here we show that in addition to small-molecule antibiotics, Streptomyces produce and secrete antibacterial protein complexes that feature a large, degenerate repeat-containing polymorphic toxin protein. A cryo-electron microscopy structure of these particles reveals an extended stalk topped by a ringed crown comprising the toxin repeats scaffolding five lectin-tipped spokes, which led us to name them umbrella particles. Streptomyces coelicolor encodes three umbrella particles with distinct toxin and lectin composition. Notably, supernatant containing these toxins specifically and potently inhibits the growth of select Streptomyces species from among a diverse collection of bacteria screened. For one target, Streptomyces griseus, inhibition relies on a single toxin and that intoxication manifests as rapid cessation of vegetative hyphal growth. Our data show that Streptomyces umbrella particles mediate competition among vegetative mycelia of related species, a function distinct from small-molecule antibiotics, which are produced at the onset of reproductive growth and act broadly3,4. Sequence analyses suggest that this role of umbrella particles extends beyond Streptomyces, as we identified umbrella loci in nearly 1,000 species across Actinobacteria.


Subject(s)
Antibiosis , Bacterial Proteins , Bacterial Toxins , Streptomyces , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Antibiosis/drug effects , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/pharmacology , Bacterial Proteins/ultrastructure , Bacterial Toxins/chemistry , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Bacterial Toxins/pharmacology , Cryoelectron Microscopy , Lectins/chemistry , Lectins/genetics , Lectins/metabolism , Lectins/ultrastructure , Microbial Sensitivity Tests , Models, Molecular , Streptomyces/chemistry , Streptomyces/drug effects , Streptomyces/genetics , Streptomyces/growth & development , Streptomyces coelicolor/chemistry , Streptomyces coelicolor/genetics , Streptomyces coelicolor/metabolism , Streptomyces griseus/drug effects , Streptomyces griseus/genetics , Streptomyces griseus/growth & development , Streptomyces griseus/metabolism
2.
J Inflamm (Lond) ; 21(1): 13, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38654364

ABSTRACT

BACKGROUND: Exposure to noxious particles, including cigarette smoke and fine particulate matter (PM2.5), is a risk factor for chronic obstructive pulmonary disease (COPD) and promotes inflammation and cell death in the lungs. We investigated the combined effects of cigarette smoking and PM2.5 exposure in patients with COPD, mice, and human bronchial epithelial cells. METHODS: The relationship between PM2.5 exposure and clinical parameters was investigated in patients with COPD based on smoking status. Alveolar destruction, inflammatory cell infiltration, and pro-inflammatory cytokines were monitored in the smoking-exposed emphysema mouse model. To investigate the mechanisms, cell viability and death and pyroptosis-related changes in BEAS-2B cells were assessed following the exposure to cigarette smoke extract (CSE) and PM2.5. RESULTS: High levels of ambient PM2.5 were more strongly associated with high Saint George's respiratory questionnaire specific for COPD (SGRQ-C) scores in currently smoking patients with COPD. Combined exposure to cigarette smoke and PM2.5 increased mean linear intercept and TUNEL-positive cells in lung tissue, which was associated with increased inflammatory cell infiltration and inflammatory cytokine release in mice. Exposure to a combination of CSE and PM2.5 reduced cell viability and upregulated NLRP3, caspase-1, IL-1ß, and IL-18 transcription in BEAS-2B cells. NLRP3 silencing with siRNA reduced pyroptosis and restored cell viability. CONCLUSIONS: PM2.5 aggravates smoking-induced airway inflammation and cell death via pyroptosis. Clinically, PM2.5 deteriorates quality of life and may worsen prognosis in currently smoking patients with COPD.

3.
BMC Bioinformatics ; 25(1): 171, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689234

ABSTRACT

BACKGROUND: Recent developments in single-cell RNA sequencing have opened up a multitude of possibilities to study tissues at the level of cellular populations. However, the heterogeneity in single-cell sequencing data necessitates appropriate procedures to adjust for technological limitations and various sources of noise when integrating datasets from different studies. While many analysis procedures employ various preprocessing steps, they often overlook the importance of selecting and optimizing the employed data transformation methods. RESULTS: This work investigates data transformation approaches used in single-cell clustering analysis tools and their effects on batch integration analysis. In particular, we compare 16 transformations and their impact on the low-dimensional representations, aiming to reduce the batch effect and integrate multiple single-cell sequencing data. Our results show that data transformations strongly influence the results of single-cell clustering on low-dimensional data space, such as those generated by UMAP or PCA. Moreover, these changes in low-dimensional space significantly affect trajectory analysis using multiple datasets, as well. However, the performance of the data transformations greatly varies across datasets, and the optimal method was different for each dataset. Additionally, we explored how data transformation impacts the analysis of deep feature encodings using deep neural network-based models, including autoencoder-based models and proto-typical networks. Data transformation also strongly affects the outcome of deep neural network models. CONCLUSIONS: Our findings suggest that the batch effect and noise in integrative analysis are highly influenced by data transformation. Low-dimensional features can integrate different batches well when proper data transformation is applied. Furthermore, we found that the batch mixing score on low-dimensional space can guide the selection of the optimal data transformation. In conclusion, data preprocessing is one of the most crucial analysis steps and needs to be cautiously considered in the integrative analysis of multiple scRNA-seq datasets.


Subject(s)
RNA-Seq , Single-Cell Analysis , Single-Cell Analysis/methods , RNA-Seq/methods , Cluster Analysis , Humans , Sequence Analysis, RNA/methods , Algorithms , Neural Networks, Computer , Single-Cell Gene Expression Analysis
4.
Proc Natl Acad Sci U S A ; 121(16): e2314990121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38593070

ABSTRACT

Langya virus (LayV) is a recently discovered henipavirus (HNV), isolated from febrile patients in China. HNV entry into host cells is mediated by the attachment (G) and fusion (F) glycoproteins which are the main targets of neutralizing antibodies. We show here that the LayV F and G glycoproteins promote membrane fusion with human, mouse, and hamster target cells using a different, yet unknown, receptor than Nipah virus (NiV) and Hendra virus (HeV) and that NiV- and HeV-elicited monoclonal and polyclonal antibodies do not cross-react with LayV F and G. We determined cryoelectron microscopy structures of LayV F, in the prefusion and postfusion states, and of LayV G, revealing their conformational landscape and distinct antigenicity relative to NiV and HeV. We computationally designed stabilized LayV G constructs and demonstrate the generalizability of an HNV F prefusion-stabilization strategy. Our data will support the development of vaccines and therapeutics against LayV and closely related HNVs.


Subject(s)
Hendra Virus , Henipavirus Infections , Henipavirus , Nipah Virus , Humans , Animals , Mice , Cryoelectron Microscopy , Glycoproteins , Virus Internalization
5.
bioRxiv ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38617231

ABSTRACT

Porcine deltacoronavirus (PDCoV) spillovers were recently detected in children with acute undifferentiated febrile illness, underscoring recurrent zoonoses of divergent coronaviruses. To date, no vaccines or specific therapeutics are approved for use in humans against PDCoV. To prepare for possible future PDCoV epidemics, we isolated human spike (S)-directed monoclonal antibodies from transgenic mice and found that two of them, designated PD33 and PD41, broadly neutralized a panel of PDCoV variants. Cryo-electron microscopy structures of PD33 and PD41 in complex with the PDCoV receptor-binding domain and S ectodomain trimer provide a blueprint of the epitopes recognized by these mAbs, rationalizing their broad inhibitory activity. We show that both mAbs inhibit PDCoV by competitively interfering with host APN binding to the PDCoV receptor-binding loops, explaining the mechanism of viral neutralization. PD33 and PD41 are candidates for clinical advancement, which could be stockpiled to prepare for possible future PDCoV outbreaks.

6.
Biomaterials ; 307: 122522, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38428092

ABSTRACT

Cellular skin substitutes such as epidermal constructs have been developed for various applications, including wound healing and skin regeneration. These cellular models are mostly derived from primary cells such as keratinocytes and fibroblasts in a two-dimensional (2D) state, and further development of three-dimensional (3D) cultured organoids is needed to provide insight into the in vivo epidermal phenotype and physiology. Here, we report the development of epidermal organoids (EpiOs) generated from induced pluripotent stem cells (iPSCs) as a novel epidermal construct and its application as a source of secreted biomolecules recovered by extracellular vesicles (EVs) that can be utilized for cell-free therapy of regenerative medicine. Differentiated iPSC-derived epidermal organoids (iEpiOs) are easily cultured and expanded through multiple organoid passages, while retaining molecular and functional features similar to in vivo epidermis. These mature iEpiOs contain epidermal stem cell populations and retain the ability to further differentiate into other skin compartment lineages, such as hair follicle stem cells. By closely recapitulating the epidermal structure, iEpiOs are expected to provide a more relevant microenvironment to influence cellular processes and therapeutic response. Indeed, iEpiOs can generate high-performance EVs containing high levels of the angiogenic growth factor VEGF and miRNAs predicted to regulate cellular processes such as proliferation, migration, differentiation, and angiogenesis. These EVs contribute to target cell proliferation, migration, and angiogenesis, providing a promising therapeutic tool for in vivo wound healing. Overall, the newly developed iEpiOs strategy as an organoid-based approach provides a powerful model for studying basic and translational skin research and may also lead to future therapeutic applications using iEpiOs-secreted EVs.


Subject(s)
Extracellular Vesicles , Pluripotent Stem Cells , Epidermis , Cell Differentiation , Organoids , Regeneration
7.
Cell Death Discov ; 10(1): 144, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491062

ABSTRACT

Particulate matter (PM) is a global environmental hazard, which affects human health through free radical production, cell death induction, and immune responses. PM activates inflammasomes leading to excessive inflammatory responses and induces ferroptosis, a type of cell death. Despite ongoing research on the correlation among PM-induced ferroptosis, immune response, and inflammasomes, the underlying mechanism of this relationship has not been elucidated. In this study, we demonstrated the levels of PM-induced cell death and immune responses in murine macrophages, J774A.1 and RAW264.7, depending on the size and composition of particulate matter. PM2.5, with extraction ions, induced significant levels of cell death and immune responses; it induces lipid peroxidation, iron accumulation, and reactive oxygen species (ROS) production, which characterize ferroptosis. In addition, inflammasome-mediated cell death occurred owing to the excessive activation of inflammatory responses. PM-induced iron accumulation activates ferroptosis and inflammasome formation through ROS production; similar results were observed in vivo. These results suggest that the link between ferroptosis and inflammasome formation induced by PM, especially PM2.5 with extraction ions, is established through the iron-ROS axis. Moreover, this study can effectively facilitate the development of a new therapeutic strategy for PM-induced immune and respiratory diseases.

8.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38305455

ABSTRACT

Novel hypotheses in biomedical research are often developed or validated in model organisms such as mice and zebrafish and thus play a crucial role. However, due to biological differences between species, translating these findings into human applications remains challenging. Moreover, commonly used orthologous gene information is often incomplete and entails a significant information loss during gene-id conversion. To address these issues, we present a novel methodology for species-agnostic transfer learning with heterogeneous domain adaptation. We extended the cross-domain structure-preserving projection toward out-of-sample prediction. Our approach not only allows knowledge integration and translation across various species without relying on gene orthology but also identifies similar GO among the most influential genes composing the latent space for integration. Subsequently, during the alignment of latent spaces, each composed of species-specific genes, it is possible to identify functional annotations of genes missing from public orthology databases. We evaluated our approach with four different single-cell sequencing datasets focusing on cell-type prediction and compared it against related machine-learning approaches. In summary, the developed model outperforms related methods working without prior knowledge when predicting unseen cell types based on other species' data. The results demonstrate that our novel approach allows knowledge transfer beyond species barriers without the dependency on known gene orthology but utilizing the entire gene sets.


Subject(s)
Algorithms , Zebrafish , Mice , Humans , Animals , Zebrafish/genetics , Gene Expression Profiling , Species Specificity , Machine Learning
9.
Biomol Ther (Seoul) ; 32(2): 171-182, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38346909

ABSTRACT

All cells are equipped with intricate signaling networks to meet the energy demands and respond to the nutrient availability in the body. AMP-activated protein kinase (AMPK) is among the most potent regulators of cellular energy balance. Under ATP -deprived conditions, AMPK phosphorylates substrates and affects various biological processes, such as lipid/glucose metabolism and protein synthesis. These actions further affect the cell growth, death, and functions, altering the cellular outcomes in energy-restricted environments. AMPK plays vital roles in maintaining good health. AMPK dysfunction is observed in various chronic diseases, making it a promising target for preventing and alleviating such diseases. Herein, we highlight the different AMPK functions, especially in allergy, aging, and cancer, to facilitate the development of new therapeutic approaches in the future.

10.
Exp Mol Med ; 56(3): 616-629, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38424193

ABSTRACT

Innate lymphoid cells (ILCs) play an important role in maintaining tissue homeostasis and various inflammatory responses. ILCs are typically classified into three subsets, as is the case for T-cells. Recent studies have reported that IL-10-producing type 2 ILCs (ILC210s) have an immunoregulatory function dependent on IL-10. However, the surface markers of ILC210s and the role of ILC210s in contact hypersensitivity (CHS) are largely unknown. Our study revealed that splenic ILC210s are extensively included in PD-L1highSca-1+ ILCs and that IL-27 amplifies the development of PD-L1highSca-1+ ILCs and ILC210s. Adoptive transfer of PD-L1highSca-1+ ILCs suppressed oxazolone-induced CHS in an IL-10-dependent manner Taken together, our results demonstrate that ILC210s are critical for the control of CHS and suggest that ILC210s can be used as target cells for the treatment of CHS.


Subject(s)
Dermatitis, Contact , Interleukin-27 , B7-H1 Antigen , Immunity, Innate , Interleukin-10 , Lymphocytes
11.
Sci Rep ; 14(1): 4145, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378854

ABSTRACT

In this study, gearbox radiated noise was successfully reduced through housing shape optimization. First, dynamic and structural-acoustic coupled analysis models of an agricultural UTV gearbox were developed. Then, the test equipment was configured to match that of the simulation model, and a test was conducted. The analysis and test results showed errors within 0.1 dB for vibration and 0.2 dB(A) for noise, indicating that the models were reliable. The housing design was then optimized using topology optimization based on the developed structural-acoustic coupling analysis model. The sound pressure level around the housing was used as an objective function for topology optimization. The optimal distribution of materials for the housing was also derived to reduce the radiated noise. Lastly, the housing rib was designed based on the optimization result, and an improvement in the radiated noise by approximately 2.43 dB(A) was confirmed in the operation area.

12.
Arthritis Res Ther ; 26(1): 11, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167214

ABSTRACT

BACKGROUND: The biological function of Acanthopanax sessiliflorus Harm (ASH) has been investigated on various diseases; however, the effects of ASH on arthritis have not been investigated so far. This study investigates the effects of ASH on rheumatoid arthritis (RA). METHODS: Supercritical carbon dioxide (CO2) was used for ASH extract preparation, and its primary components, pimaric and kaurenoic acids, were identified using gas chromatography-mass spectrometer (GC-MS). Collagenase-induced arthritis (CIA) was used as the RA model, and primary cultures of articular chondrocytes were used to examine the inhibitory effects of ASH extract on arthritis in three synovial joints: ankle, sole, and knee. RESULTS: Pimaric and kaurenoic acids attenuated pro-inflammatory cytokine-mediated increase in the catabolic factors and retrieved pro-inflammatory cytokine-mediated decrease in related anabolic factors in vitro; however, they did not affect pro-inflammatory cytokine (IL-1ß, TNF-α, and IL-6)-mediated cytotoxicity. ASH effectively inhibited cartilage degradation in the knee, ankle, and toe in the CIA model and decreased pannus development in the knee. Immunohistochemistry demonstrated that ASH mostly inhibited the IL-6-mediated matrix metalloproteinase. Gene Ontology and pathway studies bridge major gaps in the literature and provide insights into the pathophysiology and in-depth mechanisms of RA-like joint degeneration. CONCLUSIONS: To the best of our knowledge, this is the first study to conduct extensive research on the efficacy of ASH extract in inhibiting the pathogenesis of RA. However, additional animal models and clinical studies are required to validate this hypothesis.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Eleutherococcus , Mice , Animals , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Eleutherococcus/metabolism , Interleukin-6 , Arthritis, Rheumatoid/metabolism , Disease Models, Animal , Cytokines/metabolism
13.
bioRxiv ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38260518

ABSTRACT

The human coronavirus HKU1 spike (S) glycoprotein engages host cell surface sialoglycans and transmembrane protease serine 2 (TMPRSS2) to initiate infection. The molecular basis of HKU1 binding to TMPRSS2 and determinants of host receptor tropism remain elusive. Here, we designed an active human TMPRSS2 construct enabling high-yield recombinant production in human cells of this key therapeutic target. We determined a cryo-electron microscopy structure of the HKU1 RBD bound to human TMPRSS2 providing a blueprint of the interactions supporting viral entry and explaining the specificity for TMPRSS2 among human type 2 transmembrane serine proteases. We found that human, rat, hamster and camel TMPRSS2 promote HKU1 S-mediated entry into cells and identified key residues governing host receptor usage. Our data show that serum antibodies targeting the HKU1 RBD TMPRSS2 binding-site are key for neutralization and that HKU1 uses conformational masking and glycan shielding to balance immune evasion and receptor engagement.

14.
Cell Rep ; 42(12): 113552, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38096058

ABSTRACT

Immunogen design approaches aim to control the specificity and quality of antibody responses elicited by next-generation vaccines. Here, we use computational protein design to generate a nanoparticle vaccine platform based on the receptor-binding domain (RBD) of influenza hemagglutinin (HA) that enables precise control of antigen conformation and spacing. HA RBDs are presented as either monomers or native-like closed trimers that are connected to the underlying nanoparticle by a rigid linker that is modularly extended to precisely control antigen spacing. Nanoparticle immunogens with decreased spacing between trimeric RBDs elicit antibodies with improved hemagglutination inhibition and neutralization potency as well as binding breadth across diverse H1 HAs. Our "trihead" nanoparticle immunogen platform provides insights into anti-HA immunity, establishes antigen spacing as an important parameter in structure-based vaccine design, and embodies several design features that could be used in next-generation vaccines against influenza and other viruses.


Subject(s)
Influenza Vaccines , Influenza, Human , Nanoparticles , Orthomyxoviridae Infections , Humans , Influenza, Human/prevention & control , Antibodies, Viral , Antibody Formation , Hemagglutinin Glycoproteins, Influenza Virus , Vaccination , Hemagglutinins
15.
Nanomaterials (Basel) ; 13(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37947665

ABSTRACT

The vacuum process using small molecule-based organic materials to make organic photodiodes (OPDIs) will provide many promising features, such as well-defined molecular structure, large scalability, process repeatability, and good compatibility for CMOS integration, compared to the widely used Solution process. We present the performance of planar heterojunction OPDIs based on pentacene as the electron donor and C60 as the electron acceptor. In these devices, MoO3 and BCP interfacial layers were interlaced between the electrodes and the active layer as the electron- and hole-blocking layer, respectively. Typically, BCP played a good role in suppressing the dark current by two orders higher than that without that layer. These devices showed a significant dependence of the performance on the thickness of the pentacene. In particular, with the pentacene thickness of 25 nm, an external quantum efficiency at the 360 nm wavelength according to the peak absorption of C60 was enhanced by 1.5 times due to a cavity effect, compared to that of the non-cavity device. This work shows the importance of a vacuum processing approach based on small molecules for OPDIs, and the possibility of improving the performance via the optimization of the device architecture.

16.
Cell Host Microbe ; 31(12): 1961-1973.e11, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-37989312

ABSTRACT

Although Rhinolophus bats harbor diverse clade 3 sarbecoviruses, the structural determinants of receptor tropism along with the antigenicity of their spike (S) glycoproteins remain uncharacterized. Here, we show that the African Rhinolophus bat clade 3 sarbecovirus PRD-0038 S has a broad angiotensin-converting enzyme 2 (ACE2) usage and that receptor-binding domain (RBD) mutations further expand receptor promiscuity and enable human ACE2 utilization. We determine a cryo-EM structure of the PRD-0038 RBD bound to Rhinolophus alcyone ACE2, explaining receptor tropism and highlighting differences with SARS-CoV-1 and SARS-CoV-2. Characterization of PRD-0038 S using cryo-EM and monoclonal antibody reactivity reveals its distinct antigenicity relative to SARS-CoV-2 and identifies PRD-0038 cross-neutralizing antibodies for pandemic preparedness. PRD-0038 S vaccination elicits greater titers of antibodies cross-reacting with vaccine-mismatched clade 2 and clade 1a sarbecoviruses compared with SARS-CoV-2 S due to broader antigenic targeting, motivating the inclusion of clade 3 antigens in next-generation vaccines for enhanced resilience to viral evolution.


Subject(s)
Chiroptera , Severe acute respiratory syndrome-related coronavirus , Animals , Humans , Angiotensin-Converting Enzyme 2 , SARS-CoV-2/genetics , Tropism , Spike Glycoprotein, Coronavirus , Antibodies, Viral
17.
Bioengineering (Basel) ; 10(10)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37892862

ABSTRACT

Blood-brain barrier (BBB) models are important tools for studying CNS drug delivery, brain development, and brain disease. In vitro BBB models have been obtained from animals and immortalized cell lines; however, brain microvascular endothelial cells (BMECs) derived from them have several limitations. Furthermore, obtaining mature brain microvascular endothelial-like cells (BME-like cells) from human pluripotent stem cells (hPSCs) with desirable properties for establishing BBB models has been challenging. Here, we developed an efficient method for differentiating hPSCs into BMECs that are amenable to the development and application of human BBB models. The established conditions provided an environment similar to that occurring during BBB differentiation in the presence of the co-differentiating neural cell population by the modulation of TGF-ß and SHH signaling. The developed BME-like cells showed well-organized tight junctions, appropriate expression of nutrient transporters, and polarized efflux transporter activity. In addition, BME-like cells responded to astrocytes, acquiring substantial barrier properties as measured by transendothelial electrical resistance. Moreover, the BME-like cells exhibited an immune quiescent property of BBB endothelial cells by decreasing the expression of adhesion molecules. Therefore, our novel cellular platform could be useful for drug screening and the development of brain-permeable pharmaceuticals.

18.
bioRxiv ; 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37745523

ABSTRACT

Although Rhinolophus bats harbor diverse clade 3 sarbecoviruses, the structural determinants of receptor tropism along with the antigenicity of their spike (S) glycoproteins remain uncharacterized. Here, we show that the African Rinolophus bat clade 3 sarbecovirus PRD-0038 S has a broad ACE2 usage and that RBD mutations further expand receptor promiscuity and enable human ACE2 utilization. We determined a cryoEM structure of the PRD-0038 RBD bound to R. alcyone ACE2, explaining receptor tropism and highlighting differences with SARS-CoV-1 and SARS-CoV-2. Characterization of PRD-0038 S using cryoEM and monoclonal antibody reactivity revealed its distinct antigenicity relative to SARS-CoV-2 and identified PRD-0038 cross-neutralizing antibodies for pandemic preparedness. PRD-0038 S vaccination elicited greater titers of antibodies cross-reacting with vaccine-mismatched clade 2 and clade 1a sarbecoviruses compared to SARS-CoV-2 S due to broader antigenic targeting, motivating the inclusion of clade 3 antigens in next-generation vaccines for enhanced resilience to viral evolution.

19.
J Cardiovasc Dev Dis ; 10(9)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37754794

ABSTRACT

Objectives: Heart rate turbulence (HRT) and T-wave alternans (TWA), non-invasive markers of cardiac autonomic dysfunction, and ventricular repolarization abnormality, reportedly, predict the risk of cardiovascular death after myocardial infarction. We investigated whether pre-operative assessment of HRT and/or TWA could predict long-term mortality following coronary artery bypass graft (CABG) surgery. Methods: From May 2010 to December 2017, patients undergoing elective CABG and receiving 24 h ambulatory electrocardiogram monitoring 1 to 5 days prior to CABG surgery were prospectively enrolled. Pre-operative HRT and TWA were measured using a 24 h ambulatory electrocardiogram. The relative risk of cardiac or overall death was assessed according to abnormalities of HRT, TWA, or left ventricular ejection fraction (LV EF). Results: During the mean follow-up period of 4.6 ± 3.9 years, 40 adjudicated overall (5.9%/yr) and 5 cardiac deaths (0.9%/yr) occurred in 146 enrolled patients (64.9 ± 9.3 years; 108 males). Patients with abnormal HRT exhibited significantly higher relative risks of cardiac death (adjusted hazard ratio [HR] 24.9, 95% confidence interval [CI] 1.46-427) and all-cause death (adjusted HR 5.77, 95% CI 2.34-14.2) compared to those with normal HRT. Moreover, abnormal HRT plus abnormal TWA and LV EF < 50% was associated with a greater elevation in cardiac and overall mortality risk. The predictive role of abnormal HRT with/without abnormal TWA for all-cause death was likely more prominent in patients with mildly reduced (35 to 50%) or preserved (≥50%) LV EF. Abnormal HRT plus abnormal TWA and LV EF < 50% showed high negative predictive value in cardiac and overall mortality risk. Conclusions: Assessment of pre-operative HRT and/or TWA predicted mortality risk in patients undergoing elective CABG. Combined analysis of HRT, TWA, and LVEF enhanced the prognostic power. In particular, the predictive value of HRT was enhanced in patients with preserved or mid-range LV EF.

20.
bioRxiv ; 2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37645760

ABSTRACT

Langya virus (LayV) is a recently discovered henipavirus (HNV), isolated from febrile patients in China. HNV entry into host cells is mediated by the attachment (G) and fusion (F) glycoproteins which are the main targets of neutralizing antibodies. We show here that the LayV F and G glycoproteins promote membrane fusion with human, mouse and hamster target cells using a different, yet unknown, receptor than NiV and HeV and that NiV- and HeV-elicited monoclonal and polyclonal antibodies do not cross-react with LayV F and G. We determined cryo-electron microscopy structures of LayV F, in the prefusion and postfusion states, and of LayV G, revealing previously unknown conformational landscapes and their distinct antigenicity relative to NiV and HeV. We computationally designed stabilized LayV G constructs and demonstrate the generalizability of an HNV F prefusion-stabilization strategy. Our data will support the development of vaccines and therapeutics against LayV and closely related HNVs.

SELECTION OF CITATIONS
SEARCH DETAIL
...