Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(5): eadk9211, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38295170

ABSTRACT

Studying the photoinduced changes of materials with atomic-scale spatial resolution can provide a fundamental understanding of light-matter interaction. A long-standing impediment has been the detrimental thermal effects on the stability of the tunneling gap from intensity-modulated laser irradiation of the scanning tunneling microscope junction. Photoinduced DC current transduces photons to an electric current and is widely applied in optoelectronics as switches and signal transmission. Our results revealed the origin of the light-induced DC current and related it to the two-level population dynamics and related nonlinearity in the conductance of a single molecule. Here, we compensated for the near-visible laser-induced thermal effects to demonstrate photoinduced DC current spectroscopy and microscopy and to observe the persistent photoconductivity of a two-level pyrrolidine molecule. The methodology can be generally applied to the coupling of light to scan probes to investigate light-matter interactions at the atomic scale.

2.
Nanomaterials (Basel) ; 13(16)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37630941

ABSTRACT

In this study, various diffusers are applied to highly efficient ultra-thin emission layer (EML) structure-based blue phosphorescent organic light-emitting diodes (PHOLEDs) to improve the electroluminescence (EL) characteristics and viewing angle. To achieve highly efficient blue PHOLEDs, the EL characteristics of ultra-thin EML PHOLEDs with the various diffusers having different structures of pattern-shape (hemisphere/sphere), size (4~75 µm), distribution (surface/embedded), and packing (close-packed/random) were systematically analyzed. The diffusers showed different enhancements in the overall EL characteristics of efficiencies, viewing angle, and others. The EL characteristics showed apparent dependency on their structure. The external quantum efficiency (EQE) was enhanced mainly by following the orders of pattern, size, and shape. Following the pattern size, the EQE enhancement gradually increased; the largest-sized diffuser with a 75 µm closed-packed hemisphere (diffuser-1) showed a 1.47-fold EQE improvement, which was the highest. Meanwhile, the diffuser with a ~7 µm random embedded sphere with a low density (diffuser 5) showed the lowest 1.02-fold-improved EQE. The reference device with ultra-thin EML structure-based blue PHOLEDs showed a maximum EQE of 16.6%, and the device with diffuser 1 achieved a maximum EQE of 24.3% with a 5.1% wider viewing angle compared to the reference device without a diffuser. For the in-depth analysis, the viewing angle profile of the ultra-thin EML PHOLED device and fluorescent green OLEDs were compared. As a result, the efficiency enhancement characteristics of the diffusers show a difference in the viewing angle profile. Finally, the application of the diffuser successfully demonstrated that the EL efficiency and viewing angle could be selectively improved. Additionally, we found that it was possible to realize a wide viewing angle and achieve considerable EQE enhancement by further investigations using high-density and large-sized embedded structures of light-extraction film.

3.
Nanomaterials (Basel) ; 13(16)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37630950

ABSTRACT

We report the electroluminescence (EL) characteristics of blue ultra-thin emissive layer (U-EML) phosphorescent (PH) organic light-emitting diodes (OLED) and thermally activated delayed fluorescence (TADF) OLED. A variety of transport layer (TL) materials were used in the fabricated OLEDs. The well-known FIrpic and DMAC-DPS were used with a thickness of 0.3 nm, which is relatively thicker than the optimal thickness (0.15 nm) of the blue phosphorescent ultra-thin emissive layer to ensure sufficient energy transfer. While FIrpic showed overall high efficiency in various TLs, DMAC-DPS exhibited three times lower efficiency in limited TLs. To clarify/identify low efficiency and to improve the EL, the thickness of DMAC-DPS was varied. A significantly higher and comparable efficiency was observed with a thickness of 4.5 nm, which is 15 times thicker. This thickness was oriented from the TADF itself, which reduces quenching in a triplet-triplet annihilation compared to the PH process. The thinner optimal thickness compared with ~30 nm of fluorescent OLEDs suggests that there still is quenching taking place. We expect that the efficiency of TADF U-EML OLEDs can be enhanced through further research on controlling the exciton quenching using multiple U-EMLs with spacers and a novel material with a high energy transfer rate (ΔES-T).

4.
Nanomaterials (Basel) ; 13(15)2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37570534

ABSTRACT

In this study, we demonstrated organic light-emitting diodes (OLEDs) outcoupling with a flexible polydimethylsiloxane (PDMS) film with a micro-convex structure using the breath figure (BF) method. We can easily control the micro-convex pattern by adjusting the concentration of polystyrene and the humidity during the BF process. As process conditions to fabricate the micro-convex structure, polymer concentrations of 10, 20, 40, and 80 mg/mL and 60, 70, and 80% relative humidity were used. To evaluate the optical properties, we analyzed the transmission, diffusion, and electroluminescence with or without the micro-convex structure on the OLEDs. The shape and density of the micro-convex structure are related to its optical properties and outcoupling and we have experimentally demonstrated this. By applying a micro-convex structure, it achieved up to a 42% improvement in the external quantum efficiency compared to bare OLEDs (without any light extraction film). We expect the fabricated flexible light extraction film to be effective for outcoupling and applicable to flexible devices.

5.
Nanomaterials (Basel) ; 13(15)2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37570570

ABSTRACT

This study investigates the application of scattering structures to the metal layer in a DMD (Dielectric/Metal/Dielectric) configuration through plasma treatment. The purpose is to enhance the light extraction efficiency of organic light-emitting diodes (OLEDs). Different plasma conditions were explored to create scattering structures on the metal layer. The fabricated devices were characterized for their electrical and optical properties. The results demonstrate that the introduction of scattering structures through plasma treatment effectively improves the light extraction efficiency of OLEDs. Specifically, using O2-plasma treatment on the metal layer resulted in significant enhancements in the total transmittance, haze, and figure of merit. These findings suggest that incorporating scattering structures within the DMD configuration can effectively promote light extraction in OLEDs, leading to enhanced overall performance and light efficiency.

6.
Nanomaterials (Basel) ; 12(12)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35745343

ABSTRACT

We present a micro-sphere PDMS film to improve the external quantum efficiency (EQE) in OLEDs. The micro-sphere PDMS film was fabricated with the breath figure (BF) and replica molding process. The polymer template was prepared through stabilization of the water droplets at the polymer/water interface. The micro-sphere PDMS film was fabricated by pouring PDMS on the polymer template. At a 45 mg/mL concentration, the size of the spheres was approximately 12.3 µm and they had the most circular shape, so this condition yielded the best performance, with an improvement of 33% in the EQE and the widest viewing angle ranging from 0° to 50°. As a result, the sphere film's size and distribution seem to play important roles in enhancing the EQE in OLEDs. Furthermore, the flexible sphere film based on polymeric materials could offer an effective, large-scale, mass-produced product and a simple process and approach to achieve high efficiency in flexible OLEDs.

7.
Nanomaterials (Basel) ; 12(9)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35564139

ABSTRACT

In this study, we fabricated a random nanostructure (RNS) external light extraction composite layer containing high-refractive-index nanoparticles through a simple and inexpensive solution process and a low-temperature mask-free process. We focused on varying the shape and density of the RNSs and adjusted the concentration of the high-refractive-index nanoparticles to control the optical properties. The RNSs fabricated using a low-temperature mask-free process can use the distance between the nanostructures and various forms to control the diffraction and scattering effects in the visible light wavelength range. Consequently, our film exhibited a direct transmittance of ~85% at a wavelength of 550 nm. Furthermore, when the RNSs' composite film, manufactured using the low-temperature mask-free process, was applied to organic light-emitting diodes (OLEDs), it exhibited an external quantum efficiency improvement of 32.2% compared with the OLEDs without the RNSs. Therefore, the randomly distributed high-refractive-index nanoparticles on the polymer film can reduce the waveguide mode and total reflection at the substrate/air interface. These films can be used as a scattering layer to reduce the loss of the OLED substrate mode.

8.
Nanomaterials (Basel) ; 12(8)2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35457971

ABSTRACT

In this study, an external light extraction layer with a micro-nano hybrid structure was applied to improve the external light extraction efficiency of organic light-emitting diodes (OLEDs). A reactive ion-etching (RIE) process, using O2 and CHF3 plasma, was performed on the surface of the micro-scale pattern to form micro-nano hybrid structures. According to the results of this study, the nanostructures formed by the treatment of O2 and CHF3 were different, and the efficiency according to the structures was analyzed experimentally and theoretically. As a result, the OLED, to which the micro-nano hybrid structure, manufactured through a simple process, is applied, improved the external light extraction efficiency by up to 38%, and an extended viewing angle profile was obtained. Additionally, an effective method for enhancing the out-coupling efficiency of OLEDs was presented by optimizing the micro-nano hybrid structure according to process conditions.

9.
Maxillofac Plast Reconstr Surg ; 44(1): 11, 2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35298724

ABSTRACT

BACKGROUND: Many studies on maintaining the condyle in a normal or anatomical position during orthognathic surgery have been conducted to stabilize surgical outcomes and prevent iatrogenic temporomandibular joint complications. The aim of this study is to evaluate the changes in condylar positions after orthognathic surgery using virtual surgical planning via the balanced orthognathic surgery (BOS) system. METHODS: Postoperative changes in condylar position were retrospectively evaluated in 22 condyles of 11 patients with skeletal class III malocclusion who underwent orthognathic surgery using virtual surgical planning via the BOS system. The center point coordinates of the condylar head before and after orthognathic surgery were analyzed using voxel-based registration. RESULTS: Changes in the condylar position mainly occurred downward in the y-axis (-1.09 ± 0.62 mm) (P < 0.05). The change in the x-axis (0.02 ± 0.68 mm) and z-axis (0.01 ± 0.48 mm) showed no significant difference between before and after orthognathic surgery. CONCLUSION: These results indicate that the changes in the condylar positions after orthognathic surgery using virtual surgical planning via the BOS system mainly occurred downward in the y-axis, with slight changes in the x- and z-axes. The change in the condylar position after orthognathic surgery using the BOS system is clinically acceptable.

10.
Maxillofac Plast Reconstr Surg ; 43(1): 27, 2021 Jul 17.
Article in English | MEDLINE | ID: mdl-34273017

ABSTRACT

BACKGROUND: Compared to the conventional approach, including preoperative orthodontic preparation, the so-called surgery-first approach (SFA) seems to reduce the overall treatment time in the correction of skeletal class III dentofacial deformity. However, there have been controversies about postoperative skeletal stability with SFA. Therefore, we investigated the long-term stability and the overall treatment time after maxillomandibular surgery for skeletal class III correction with or without preoperative orthodontic preparation. METHODS: This retrospective study included eight patients who underwent maxillomandibular surgery for class III correction with the SFA (SFA group) and 20 patients who underwent the conventional approach (CA group). A comparative study of the change in the maxillary and mandibular position on preoperative (T1), 1-day (T2), 6-month (T3), and 2-year (T4) postoperative lateral cephalograms. We calculated the overall treatment time for each group. RESULTS: At the presurgical stage (T1), there was no bias in the skeletal features between the two groups. In the surgical change from T1 to T2, the mandible (point B) of the CA group was significantly moved superiorly. Short-term changes from T2 to T3 revealed that the mandible moved forward in both groups, whereas the maxillary position showed no significant changes. Long-term changes from T3 to T4 demonstrated that none of the measured parameters showed any significant differences. Finally, the average of overall treatment time was 15.1 months in the SFA group and 26.0 months in the CA group. CONCLUSIONS: These findings suggest that SFA in bimaxillary orthognathic surgery for skeletal class III correction leads to predictable long-term skeletal stability, similar to surgery with CA. Furthermore, SFA reduced the overall treatment time compared to CA.

11.
Maxillofac Plast Reconstr Surg ; 43(1): 10, 2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33730262

ABSTRACT

BACKGROUND: Pedicled buccal fat pad (PBFP) has been used for the reconstruction of small-sized maxillary defects but cannot be used without hard tissue support on the defect larger than 4 cm × 4 cm × 3 cm. CASE PRESENTATION: A 64-year-old man had a history of squamous cell carcinoma of the left maxilla. After removal of the posterior maxilla, a complex bone defect (size, 5 cm × 4 cm × 3 cm) was immediately reconstructed using PBFP combined with a titanium mesh. A pinpoint fistula was found in the left palatal region 1 month after the surgery and was treated with a palatal sliding flap. There were no further complications during the follow-up. CONCLUSION: The present technique demonstrated that PBFP combined with a titanium mesh could be used for the reconstruction of complex maxillary defect (size, 5 cm × 4 cm × 3 cm) without additional bone graft.

12.
Acc Chem Res ; 54(2): 323-331, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33377765

ABSTRACT

The structure and reactivity of a molecule in the condensed phase are governed by its intermolecular interactions with the surrounding environment. The multipole expansion of each molecule in the condensed phase indicates that the intermolecular interactions are essentially electrostatic (e.g., ion-dipole, dipole-dipole, dipole-quadrupole, dipole-induced dipole). The electrostatic field is a fundamental language of intermolecular communications. Therefore, understanding the influence of the electrostatic field on a molecule, that is, the mechanisms by which an electrostatic field manipulates a molecule, from the perspective of molecular structure, energy states, and dynamics is indispensable for illustrating and, by extension, controlling the chemistry in molecular systems.In this Account, we describe the recent progress made in manipulation of molecular processes using an external DC electrostatic field. An electrostatic field with unprecedentedly high strength (≤4 × 108 V/m) was applied in a controlled manner across a molecular film sample using the ice film nanocapacitor method. This field strength is comparable in magnitude to that of weak intermolecular interactions such as van der Waals interactions in the condensed phases. The samples were prepared using a thin film growing technique in vacuum to obtain the desired chemically tailored molecular systems. The examples of prepared systems included small molecules and molecular clusters isolated in cryogenic Ar matrices, frozen molecular films in amorphous or crystalline phase, and interfaces of multilayered molecular films. The response of the molecules to the external field was monitored by reflection-absorption infrared spectroscopy. This approach allowed us to investigate a variety of molecular systems with various intermolecular strength and environments under the influence of strong electrostatic fields. The range of observed molecular behaviors includes the manipulation of molecular orientation, intramolecular dynamics, and proton transfer reactions as an example of stereodynamic control of chemical reactivity. These observations improve our understanding of molecular behaviors in strong electric fields and broaden our perspective on electrostatic manipulation of molecules. This information is also relevant to a variety of research topics in physical and biological sciences where electric fields play a role in molecular and biological functions.

13.
J Pathol Transl Med ; 54(4): 346-350, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32586069

ABSTRACT

Of the drugs developed to prevent and treat osteoporosis, bisphosphonate has played a very important role in preventing osteoporotic fractures. However, case reports describing atypical femoral fractures in patients using long-term bisphosphonates have emerged. The majority of atypical femur fractures occurs in the lateral aspect of the subtrochanteric or femur diaphysis, which is explained by accumulation of tensile stress in these areas. Although the superior cortex of the femur neck withstands maximum tensile stress, to our knowledge, there have been only two reports (three cases) of atypical femoral neck fracture. In addition, none of those case reports revealed detailed pathology related to suppressed bone turnover rate. We encountered an incomplete femoral neck fracture and diagnosed it as "atypical" on the basis of the patient's lack of trauma and medication history and pathological findings. For patients with groin pain, minimal or no trauma, and a history of long-term bisphosphonate use, an atypical femoral neck fracture should be considered.

14.
J Phys Chem B ; 124(22): 4581-4589, 2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32414234

ABSTRACT

In this study, the effect of a strong (≤4 × 108 V·m-1) dc electric field on hydrogen chloride (HCl) dimers and trimers isolated in a solid argon matrix has been investigated using the ice film nanocapacitor and reflection-absorption infrared spectroscopy methods. The H-Cl vibrational bands of the HCl dimers showed a linear Stark frequency shift and an increased intensity under the applied electric field, and these changes were reversible with the electric field strength. This behavior indicated that the dimers were reoriented by the applied electric field. The reorientation occurred via tunneling inversion of individual HCl subunits of the dimer, which interconverted the proton-accepting and -donating HCl subunits, as observed for the heterodimers HCl-DCl and DCl-HCl. The interconversion of dimers could occur even at low electric field strength (∼107 V·m-1) and was almost complete above the field strength of 1.0 × 108 V·m-1. In contrast, the asymmetric H-Cl stretching bands of the HCl trimers exhibited Stark broadening under the influence of the electric field without a shift in frequency or change in intensity. This behavior indicated that the cyclic structure of the HCl trimer was stable even when subjected to a strong electric field. The Stark sensitivity factor (Δµ) of H-Cl vibrations was deduced from the Stark effect analysis of the HCl dimer and trimer bands, which gave the following: ΔµD1 = 2.3 ± 0.2 cm-1/(108 V·m-1) for the proton-acceptor subunit of the dimer, ΔµD2 = 5.1 ± 0.5 cm-1/(108 V·m-1) for the proton-donor subunit of the dimer, and ΔµT = 4.5 ± 0.5 cm-1/(108 V·m-1) for the asymmetric stretching vibration of the cyclic trimer.

15.
J Craniofac Surg ; 31(3): 658-661, 2020.
Article in English | MEDLINE | ID: mdl-31985598

ABSTRACT

PURPOSE: The aim of this study was to evaluate the effect of buccal fat pad (BFP) in the palatoplasty and to investigate the risk factors associated with postoperative palatal fistula formation. MATERIALS AND METHODS: Sixty-five cleft palate patients were enrolled for this study. Clinical data regarding sex, age, type of cleft, surgical technique, the ratio of cleft width, and BFP graft were collected. The ratio of cleft width was measured and calculated using preoperative clinical photographs. In 36 patients, the BFP was harvested and grafted on the cleft palate to prevent palatal fistula formation. The patients were followed up, the incidence of fistula formation was investigated, and the risk factors related with the fistula were evaluated. RESULTS: Four patients had postoperative palatal fistula and were not BFP grafted during operation. The BFP graft and ratio of cleft width are significant factors in palatal fistula formation (P = .035, .003). There was a significant difference in the ratio of cleft width between the normal and fistula groups (P = .006). In the logistic regression analysis, there was significant association between high ratio of cleft width and palatal fistula formation in the no BFP group (odds ratio; 11.15, P = .036). CONCLUSIONS: The ratio of cleft width and BFP graft was a significant factor in palatal fistula formation. The BFP graft is a reliable procedure to prevent palatal fistula formation and increase the success of palatoplasty.


Subject(s)
Adipose Tissue/surgery , Cheek/surgery , Cleft Palate/surgery , Oral Fistula/etiology , Orthopedic Procedures/adverse effects , Postoperative Complications , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Incidence , Infant , Male , Oral Fistula/epidemiology , Risk Factors , Young Adult
16.
Proc Natl Acad Sci U S A ; 116(47): 23444-23447, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31690662

ABSTRACT

Ammonia is special. It is nonplanar, yet in v = 1 of the umbrella mode (ν2) its inversion motion is faster than J = 0↔1 rotation. Does the simplicity of the Chemist's concept of an electric dipole moment survive the competition between rotation, inversion, and a strong external electric field? NH3 is a favorite pedagogical example of tunneling in a symmetric double-minimum potential. Tunneling is a dynamical concept, yet the quantitative characteristics of tunneling are expressed in a static, eigenstate-resolved spectrum. The inverting-umbrella tunneling motion in ammonia is both large amplitude and profoundly affected by an external electric field. We report how a uniquely strong (up to 108 V/m) direct current (DC) electric field causes a richly detailed sequence of reversible changes in the frequency-domain infrared spectrum (the v = 0→1 transition in the ν2 umbrella mode) of ammonia, freely rotating in a 10 K Ar matrix. Although the spectrum is static, encoded in it is the complete inter- and intramolecular picture of tunneling dynamics.

17.
J Korean Assoc Oral Maxillofac Surg ; 45(5): 276-284, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31728335

ABSTRACT

OBJECTIVES: This study sought to compare efficiency results between the use of a customized implant (CI) and a reconstruction plate (RP) in mandibular defect reconstruction in an animal model. MATERIALS AND METHODS: Fifteen rabbits underwent surgery to create a defect in the right side of the mandible and were randomly divided into two groups. For reconstruction of the mandibular defect, the RP group (n=5) received five-hole mini-plates without bone grafting and the CI group (n=10) received fabricated CIs based on the cone-beam computed tomography (CBCT) data taken preoperatively. The CI group was further divided into two subgroups depending on the time of CBCT performance preoperatively, as follows: a six-week CI (6WCI) group (n=5) and a one-week CI (1WCI) group (n=5). Daily food intake amount (DFIA) was measured to assess the recovery rate. Radiographic images were acquired to evaluate screw quantity. CBCT and histological examination were performed in the CI subgroup after sacrifice. RESULTS: The 1WCI group showed the highest value in peak average recovery rate and the fastest average recovery rate. In terms of reaching a 50% recovery rate, the 1WCI group required the least number of days as compared with the other groups (2.6±1.3 days), while the RP group required the least number of days to reach an 80% recovery rate (7.8±2.2 days). The 1WCI group showed the highest percentage of intact screws (94.3%). New bone formation was observed in the CI group during histological examination. CONCLUSION: Rabbits with mandibular defects treated with CI showed higher and faster recovery rates and more favorable screw status as compared with those treated with a five-hole mini-plate without bone graft.

19.
J Nanosci Nanotechnol ; 19(10): 6444-6451, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31026975

ABSTRACT

Carbon black and titanium dioxide have been widely used as pigment particles for electrophoretic displays. However, the effect of external water vapor on these pigment particles has not yet been presented. Therefore, in this work, we report the clumping phenomenon between pigment particles as a result of water vapor absorption. To verify clumping between pigment particles, various analysis techniques were used, including scanning electron microscopy, atomic force microscopy, zeta potential measurement, and Raman spectroscopy. We examined the Raman spectrum of carbon black to demonstrate the effect of water vapor absorption on particles. According to the Raman spectrum analysis, the 2D and 2D' peak intensities were significantly increased; moreover, the full widths at half maximum were modified. Thus, we concluded that water vapor absorption on pigment particles can induce the clumping phenomenon on pigments. To protect an electrophoretic display device from external gas transmission, we applied a nanocomposites gas barrier film to the device. The device lifetime was consequently improved by 336%.

20.
Maxillofac Plast Reconstr Surg ; 41(1): 8, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30886836

ABSTRACT

BACKGROUND: Resorbable devices have recently been adopted in the field of orthognathic surgery with controversies about their postoperative skeletal stability. Hence, we determined the long-term skeletal stability of unsintered hydroxyapatite/poly-l-lactic acid (HA/PLLA) mesh for osteofixation of mandibular sagittal split ramus osteotomy (SSRO), and compared it with that of titanium miniplate. METHODS: Patients were divided into resorbable mesh and titanium miniplate fixation groups. A comparative study of the change in the mandibular position was performed with preoperative, 1-day, 6-month, and 2-year postoperative lateral cephalograms. RESULTS: At postoperative 6 months-compared with postoperative 1 day, point B (supra-mentale) was significantly displaced anteriorly in the titanium-fixation group. Moreover, at postoperative 2 years-compared with postoperative 6 months, point B was significantly displaced inferiorly in the titanium-fixation. However, the HA/PLLA mesh-fixation group did not show any significant change with respect to point B postoperatively. CONCLUSIONS: The HA/PLLA mesh-fixation group demonstrated superior long-term skeletal stability with respect to the position of mandible, when compared with the titanium-fixation group.

SELECTION OF CITATIONS
SEARCH DETAIL
...