Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Open J Eng Med Biol ; 5: 75-85, 2024.
Article in English | MEDLINE | ID: mdl-38487099

ABSTRACT

Goal: Dynamically monitoring serotonin in real-time within target brain regions would significantly improve the diagnostic and therapeutic approaches to a variety of neurological and psychiatric disorders. Current systems for measuring serotonin lack immediacy and portability and are bulky and expensive. Methods: We present a new miniaturised device, named SmartFSCV, designed to monitor dynamic changes of serotonin using fast-scan cyclic voltammetry (FSCV). This device outputs a precision voltage potential between -3 to +3 V, and measures current between -1.5 to +1.5 µA with nano-ampere accuracy. The device can output modifiable arbitrary waveforms for various measurements and uses an N-shaped waveform at a scan-rate of 1000 V/s for sensing serotonin. Results: Four experiments were conducted to validate SmartFSCV: static bench test, dynamic serotonin test and two artificial intelligence (AI) algorithm tests. Conclusions: These tests confirmed the ability of SmartFSCV to accurately sense and make informed decisions about the presence of serotonin using AI.

2.
Cell Chem Biol ; 30(12): 1557-1570.e6, 2023 12 21.
Article in English | MEDLINE | ID: mdl-37992715

ABSTRACT

Depression pathology remains elusive. The monoamine hypothesis has placed much focus on serotonin, but due to the variable clinical efficacy of monoamine reuptake inhibitors, the community is looking for alternative therapies such as ketamine (neurogenesis theory of antidepressant action). There is evidence that different classes of antidepressants may affect serotonin levels; a notion we test here. We measure hippocampal serotonin in mice with voltammetry and study the effects of acute challenges of escitalopram, fluoxetine, reboxetine, and ketamine. We find that pseudo-equivalent doses of these drugs similarly raise ambient serotonin levels, despite their differing pharmacodynamics because of differences in Uptake 1 and 2, rapid SERT trafficking, and modulation of serotonin by histamine. These antidepressants have different pharmacodynamics but have strikingly similar effects on extracellular serotonin. Our findings suggest that serotonin is a common thread that links clinically effective antidepressants, synergizing different theories of depression (synaptic plasticity, neurogenesis, and the monoamine hypothesis).


Subject(s)
Ketamine , Serotonin , Mice , Animals , Selective Serotonin Reuptake Inhibitors/pharmacology , Ketamine/pharmacology , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Fluoxetine/pharmacology
3.
Sci Adv ; 9(43): eadh3273, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37889977

ABSTRACT

Mechanical stimuli, such as stroking or pressing on the skin, activate mechanoreceptors transmitting information to the sensory nervous system and brain. It is well accepted that deflection of the hair fiber that occurs with a light breeze or touch directly activates the sensory neurons surrounding the hair follicle, facilitating transmission of mechanical information. Here, we hypothesized that hair follicle outer root sheath cells act as transducers of mechanical stimuli to sensory neurons surrounding the hair follicle. Using electrochemical analysis on human hair follicle preparations in vitro, we were able to show that outer root sheath cells release ATP and the neurotransmitters serotonin and histamine in response to mechanical stimulation. Using calcium imaging combined with pharmacology in a coculture of outer root sheath cells with sensory neurons, we found that the release of these three molecules from hair follicle cells leads to activation of sensory neurons.


Subject(s)
Hair Follicle , Hair , Humans , Skin , Sensory Receptor Cells
4.
Res Sq ; 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37034599

ABSTRACT

Depression pathology remains elusive. The monoamine hypothesis has placed much focus on serotonin, but due to the variable clinical efficacy of monoamine reuptake inhibitors, the community is looking for alternative therapies such as ketamine (synaptic plasticity and neurogenesis theory of antidepressant action). There is evidence that different classes of antidepressants may affect serotonin levels; a notion we test here. We measure hippocampal serotonin in mice with voltammetry and study the effects of acute challenges of antidepressants. We find that pseudo-equivalent doses of these drugs similarly raise ambient serotonin levels, despite their differing pharmacodynamics because of differences in Uptake 1 and 2, rapid SERT trafficking and modulation of serotonin by histamine. These antidepressants have different pharmacodynamics but have strikingly similar effects on extracellular serotonin. Our findings suggest that serotonin is a common thread that links clinically effective antidepressants, synergizing different theories of depression (synaptic plasticity, neurogenesis and the monoamine hypothesis).

5.
Anal Chem ; 94(25): 8847-8856, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35713335

ABSTRACT

Depression is quickly becoming one of the world's most pressing public health crises, and there is an urgent need for better diagnostics and therapeutics. Behavioral models in animals and humans have not adequately addressed the diagnosis and treatment of depression, and biomarkers of mental illnesses remain ill-defined. It has been very difficult to identify biomarkers of depression because of in vivo measurement challenges. While our group has made important strides in developing in vivo tools to measure such biomarkers (e.g., serotonin) in mice using voltammetry, these tools cannot be easily applied for depression diagnosis and drug screening in humans due to the inaccessibility of the human brain. In this work, we take a chemical approach, ex vivo, to introduce a human-derived system to investigate brain serotonin. We utilize human induced pluripotent stem cells differentiated into serotonin neurons and establish a new ex vivo model of real-time serotonin neurotransmission measurements. We show that evoked serotonin release responds to stimulation intensity and tryptophan preloading, and that serotonin release and reuptake kinetics resemble those found in vivo in rodents. Finally, after selective serotonin reuptake inhibitor (SSRI) exposure, we find dose-dependent internalization of the serotonin reuptake transporters (a signature of the in vivo response to SSRI). Our new human-derived chemical model has great potential to provide an ex vivo chemical platform as a translational tool for in vivo neuropsychopharmacology.


Subject(s)
Induced Pluripotent Stem Cells , Serotonin , Animals , Biomarkers , Humans , Mice , Neurons , Serotonin/pharmacology , Serotonin Plasma Membrane Transport Proteins , Selective Serotonin Reuptake Inhibitors/pharmacology
6.
ACS Omega ; 7(10): 8314-8322, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35309454

ABSTRACT

While the neurochemistry that underpins the behavioral phenotypes of depression is the subject of many studies, oxidative stress caused by the inflammation comorbid with depression has not adequately been addressed. In this study, we described novel antidepressant-antioxidant agents consisting of selenium-modified fluoxetine derivatives to simultaneously target serotonin reuptake (antidepressant action) and oxidative stress. Excitingly, we show that one of these agents (1-F) carries the ability to inhibit serotonin reuptake in vivo in mice. We therefore present a frontier dual strategy that paves the way for the future of antidepressant therapies.

7.
Handb Exp Pharmacol ; 266: 101-117, 2021.
Article in English | MEDLINE | ID: mdl-34196807

ABSTRACT

Neuromodulators are critical regulators of the brain's signaling processes, and thus they are popular pharmacological targets for psychoactive therapies. It is clear that monoamine uptake mechanisms are complicated and subject to multiple uptake mechanisms. Uptake 1 describes uptake of the monoamine via its designated transporter (SERT for serotonin, NET for norepinephrine, and DAT for dopamine), whereas Uptake 2 details multiple transporter types on neurons and glia taking up different types of modulators, not necessarily specific to the monoamine. While Uptake 1 processes have been well-studied over the past few decades, Uptake 2 mechanisms have remained more difficult to study because of the limitations in methods that have the sensitivity and spatiotemporal resolution to look at the subtleties in uptake profiles. In this chapter we review the different experimental approaches that have yielded important information about Uptake 2 mechanisms in vivo. The techniques (scintillation microspectrophotometry, microdialysis, chronoamperometry, and voltammetry) are described in detail, and pivotal studies associated with each method are highlighted. It is clear from these reviewed works that Uptake 2 processes are critical to consider to advance our understanding of the brain and develop effective neuropsychiatric therapies.


Subject(s)
Dopamine Plasma Membrane Transport Proteins , Norepinephrine Plasma Membrane Transport Proteins , Biological Transport , Dopamine , Dopamine Plasma Membrane Transport Proteins/metabolism , Humans , Serotonin Plasma Membrane Transport Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...