Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nutrients ; 16(2)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38257136

ABSTRACT

Elite football is associated with the increased risk of illness, although targeted supplementation can reduce illness risk. This study assessed the effects of a supplement containing turmeric root within a black pepper and fat-soluble blend, vitamin C and vitamin D, on upper respiratory symptoms (URS), gastrointestinal symptoms (GIS), muscle soreness, and markers of inflammation and gut permeability in elite male footballers. Twenty-three footballers completed 3 weeks of no intervention (CON), followed by 16 weeks of daily consuming 60 mL of a commercially available supplement containing raw turmeric root (17.5 g, estimated to contain 700 mg of curcumin), vitamin C (1000 mg), and vitamin D3 (3000 IU/75 mcg) (SUP). URS and GIS were measured daily. Immediately (0 h), 40, and 64 h after six competitive matches (two in CON, four in SUP), the subjective soreness and plasma concentrations of creatine kinase [CK], c-reactive protein [CRP], and intestinal fatty-acid binding protein [I-FABP] were assessed. URS incidence (p < 0.001), GIS (p < 0.05), and plasma [I-FABP] at 0 h (p < 0.05) were greater during CON versus SUP. At 40 h, [CRP] was greater than 0 h during CON (p < 0.01) but not SUP (p = 0.204). There were no differences in soreness or [CK]. This study indicates that turmeric root, vitamin C, and vitamin D supplementation over 16 weeks can reduce URS, GIS, and post-match [I-FABP] in elite footballers.


Subject(s)
Ascorbic Acid , Football , Curcuma , Vitamins , Dietary Supplements , Vitamin D , C-Reactive Protein , Creatine Kinase
2.
Arch Pathol Lab Med ; 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38190268

ABSTRACT

CONTEXT.­: Existing targeted cystic fibrosis screening assays miss important pathogenic CFTR variants in the ethnically diverse US population. OBJECTIVE.­: To evaluate the analytic performance of a multiplex polymerase chain reaction (PCR)/capillary electrophoresis (CE) CFTR assay panel that simultaneously interrogates primary pathogenic variants of different ethnic/ancestral groups. DESIGN.­: Performance characteristic assessment and variant coverage comparison of the panel with a focus on ethnicity-specific CFTR variants were performed. Sample DNA was primarily from whole blood or cell lines. Detection of CFTR carriers was compared across several commercially available CFTR kits and recommended variant sets based on panel content. RESULTS.­: The panel interrogated 65 pathogenic CFTR variants representing 92% coverage from a recent genomic sequencing survey of the US population, including 4 variants with top 5 frequency in African or Asian populations not reflected in other targeted panels. In simulation studies, the panel represented 95% of carriers across the global population, resulting in 6.9% to 19.0% higher carrier detection rate compared with 10 targeted panels or variant sets. Precision and sensitivity/specificity were 100% concordant. Multisite sample-level genotyping accuracy was 99.2%. Across PCR and CE instruments, sample-level genotyping accuracy was 97.1%, with greater than 99% agreement for all variant-level metrics. CONCLUSIONS.­: The CFTR assay achieves 92% or higher coverage of CFTR variants in diverse populations and provides improved pan-ethnic coverage of minority subgroups of the US populace. The assay can be completed within 5 hours from DNA sample to genotype, and performance data exceed acceptance criteria for analytic metrics. This assay panel content may help address gaps in ancestry-specific CFTR genotypes while providing a streamlined procedure with rapidly generated results.

3.
J Intensive Care Med ; 38(12): 1099-1107, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37545322

ABSTRACT

Background: Despite its widespread use, there are no direct studies comparing mini-bronchoalveolar lavage (mini-BAL) to bronchoscopic bronchoalveolar lavage (BAL) for diagnosing pneumonia in ventilated patients. The aim of this study was to perform a systematic review of studies comparing ventilated patients undergoing both bronchoscopic BAL and mini-BAL, to determine the mini-BAL's diagnostic accuracy. Methods: We conducted a systematic review searching the databases PubMed (MEDLINE), EMBASE, Cochrane Library, Scopus, and clinicaltrials.gov from inception until January 2022, in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Search terms included variations on "pneumonia," "critical illness," and "mini-bronchoalveolar lavage." Article screening and data extraction were performed independently by 2 reviewers. Results: Our search yielded 4296 abstracts. This was narrowed to 6 studies in which each patient underwent both mini-BAL and bronchoscopic BAL in succession. Included patients had a mean APACHE II score of 20.02 ± 3.81 and 15.95 ± 11.46 ventilator days. The sensitivity of the mini-BAL for diagnosis of pneumonia was 0.90 (95% confidence interval [CI]: 0.778-1.000) and the specificity was 0.827 (95% CI: 0.716-0.938). Limitations included inconsistency in volume of saline instilled and heterogeneity in included patients Conclusion: This study is the first to compile data from multiple publications directly comparing the mini-BAL to bronchoscopic BAL for diagnosing pneumonia in ventilated patients. Our data demonstrate a high degree of both sensitivity and specificity of mini-BAL for the diagnosis of pneumonia in ventilated patients and indicate that mini-BAL could be considered as an acceptable alternative diagnostic study.


Subject(s)
Pneumonia , Respiration, Artificial , Humans , Bronchoalveolar Lavage Fluid , Prospective Studies , Pneumonia/diagnosis , Bronchoalveolar Lavage
4.
J Med Chem ; 64(20): 15141-15169, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34643390

ABSTRACT

Src homology 2 (SH2) domain-containing phosphatase 2 (SHP2) plays a role in receptor tyrosine kinase (RTK), neurofibromin-1 (NF-1), and Kirsten rat sarcoma virus (KRAS) mutant-driven cancers, as well as in RTK-mediated resistance, making the identification of small-molecule therapeutics that interfere with its function of high interest. Our quest to identify potent, orally bioavailable, and safe SHP2 inhibitors led to the discovery of a promising series of pyrazolopyrimidinones that displayed excellent potency but had a suboptimal in vivo pharmacokinetic (PK) profile. Hypothesis-driven scaffold optimization led us to a series of pyrazolopyrazines with excellent PK properties across species but a narrow human Ether-à-go-go-Related Gene (hERG) window. Subsequent optimization of properties led to the discovery of the pyrimidinone series, in which multiple members possessed excellent potency, optimal in vivo PK across species, and no off-target activities including no hERG liability up to 100 µM. Importantly, compound 30 (IACS-15414) potently suppressed the mitogen-activated protein kinase (MAPK) pathway signaling and tumor growth in RTK-activated and KRASmut xenograft models in vivo.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Enzyme Inhibitors/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Humans , Mice , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Structure-Activity Relationship
5.
J Med Chem ; 64(15): 11302-11329, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34292726

ABSTRACT

Indoleamine 2,3-dioxygenase 1 (IDO1), a heme-containing enzyme that mediates the rate-limiting step in the metabolism of l-tryptophan to kynurenine, has been widely explored as a potential immunotherapeutic target in oncology. We developed a class of inhibitors with a conformationally constrained bicyclo[3.1.0]hexane core. These potently inhibited IDO1 in a cellular context by binding to the apoenzyme, as elucidated by biochemical characterization and X-ray crystallography. A SKOV3 tumor model was instrumental in differentiating compounds, leading to the identification of IACS-9779 (62) and IACS-70465 (71). IACS-70465 has excellent cellular potency, a robust pharmacodynamic response, and in a human whole blood assay was more potent than linrodostat (BMS-986205). IACS-9779 with a predicted human efficacious once daily dose below 1 mg/kg to sustain >90% inhibition of IDO1 displayed an acceptable safety margin in rodent toxicology and dog cardiovascular studies to support advancement into preclinical safety evaluation for human development.


Subject(s)
Drug Discovery , Enzyme Inhibitors/pharmacology , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Molecular Structure , Structure-Activity Relationship
6.
Cancer Res ; 80(21): 4840-4853, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32928921

ABSTRACT

Src homology 2 domain-containing phosphatase (SHP2) is a phosphatase that mediates signaling downstream of multiple receptor tyrosine kinases (RTK) and is required for full activation of the MAPK pathway. SHP2 inhibition has demonstrated tumor growth inhibition in RTK-activated cancers in preclinical studies. The long-term effectiveness of tyrosine kinase inhibitors such as the EGFR inhibitor (EGFRi), osimertinib, in non-small cell lung cancer (NSCLC) is limited by acquired resistance. Multiple clinically identified mechanisms underlie resistance to osimertinib, including mutations in EGFR that preclude drug binding as well as EGFR-independent activation of the MAPK pathway through alternate RTK (RTK-bypass). It has also been noted that frequently a tumor from a single patient harbors more than one resistance mechanism, and the plasticity between multiple resistance mechanisms could restrict the effectiveness of therapies targeting a single node of the oncogenic signaling network. Here, we report the discovery of IACS-13909, a specific and potent allosteric inhibitor of SHP2, that suppresses signaling through the MAPK pathway. IACS-13909 potently impeded proliferation of tumors harboring a broad spectrum of activated RTKs as the oncogenic driver. In EGFR-mutant osimertinib-resistant NSCLC models with EGFR-dependent and EGFR-independent resistance mechanisms, IACS-13909, administered as a single agent or in combination with osimertinib, potently suppressed tumor cell proliferation in vitro and caused tumor regression in vivo. Together, our findings provide preclinical evidence for using a SHP2 inhibitor as a therapeutic strategy in acquired EGFRi-resistant NSCLC. SIGNIFICANCE: These findings highlight the discovery of IACS-13909 as a potent, selective inhibitor of SHP2 with drug-like properties, and targeting SHP2 may serve as a therapeutic strategy to overcome tumor resistance to osimertinib.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Neoplasms, Experimental/pathology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Acrylamides/pharmacology , Aniline Compounds/pharmacology , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , ErbB Receptors/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mutation , Neoplasms, Experimental/genetics , Xenograft Model Antitumor Assays
7.
J Med Chem ; 63(17): 9888-9911, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32787110

ABSTRACT

Tumor-associated macrophages (TAMs) have a significant presence in the tumor stroma across multiple human malignancies and are believed to be beneficial to tumor growth. Targeting CSF1R has been proposed as a potential therapy to reduce TAMs, especially the protumor, immune-suppressive M2 TAMs. Additionally, the high expression of CSF1R on tumor cells has been associated with poor survival in certain cancers, suggesting tumor dependency and therefore a potential therapeutic target. The CSF1-CSF1R signaling pathway modulates the production, differentiation, and function of TAMs; however, the discovery of selective CSF1R inhibitors devoid of type III kinase activity has proven to be challenging. We discovered a potent, highly selective, and orally bioavailable CSF1R inhibitor, IACS-9439 (1). Treatment with 1 led to a dose-dependent reduction in macrophages, promoted macrophage polarization toward the M1 phenotype, and led to tumor growth inhibition in MC38 and PANC02 syngeneic tumor models.


Subject(s)
Antineoplastic Agents/therapeutic use , Benzothiazoles/therapeutic use , Neoplasms/drug therapy , Pyrimidines/therapeutic use , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Benzothiazoles/chemical synthesis , Benzothiazoles/pharmacokinetics , Drug Stability , Humans , Microsomes, Liver/metabolism , Molecular Structure , Pyrimidines/chemical synthesis , Pyrimidines/pharmacokinetics , Structure-Activity Relationship , THP-1 Cells , Tumor-Associated Macrophages/drug effects
8.
Proc Natl Acad Sci U S A ; 114(26): 6842-6847, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28607090

ABSTRACT

Gel-forming mucins, the primary macromolecular components of airway mucus, facilitate airway clearance by mucociliary transport. In cystic fibrosis (CF) altered mucus properties impair mucociliary transport. Airways primarily secrete two closely related gel-forming mucins, MUC5B and MUC5AC. However, their morphologic structures and associations in airways that contain abundant submucosal glands and goblet cells are uncertain. Moreover, there is limited knowledge about mucins in airways not affected by inflammation, infection, or remodeling or in CF airways. Therefore, we examined airways freshly excised from newborn non-CF pigs and CF pigs before secondary manifestations develop. We found that porcine submucosal glands produce MUC5B, whereas goblet cells produce predominantly MUC5AC plus some MUC5B. We found that MUC5B emerged from submucosal gland ducts in the form of strands composed of multiple MUC5B filaments. In contrast, MUC5AC emerged from goblet cells as wispy threads and sometimes formed mucin sheets. In addition, MUC5AC often partially coated the MUC5B strands. Compared with non-CF, MUC5B more often filled CF submucosal gland ducts. MUC5AC sheets also accumulated in CF airways overlying MUC5B strands. These results reveal distinct morphology and interactions for MUC5B and MUC5AC and suggest that the two mucins make distinct contributions to mucociliary transport. Thus, they provide a framework for understanding abnormalities in disease.


Subject(s)
Airway Remodeling , Cystic Fibrosis/metabolism , Goblet Cells/metabolism , Mucin 5AC/metabolism , Mucin-5B/metabolism , Animals , Cystic Fibrosis/genetics , Cystic Fibrosis/pathology , Goblet Cells/pathology , Mice , Mice, Knockout , Mucin 5AC/genetics , Mucin-5B/genetics
9.
Proc Natl Acad Sci U S A ; 113(19): 5382-7, 2016 May 10.
Article in English | MEDLINE | ID: mdl-27114540

ABSTRACT

Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. Airway disease is the major source of morbidity and mortality. Successful implementation of gene- and cell-based therapies for CF airway disease requires knowledge of relationships among percentages of targeted cells, levels of CFTR expression, correction of electrolyte transport, and rescue of host defense defects. Previous studies suggested that, when ∼10-50% of airway epithelial cells expressed CFTR, they generated nearly wild-type levels of Cl(-) secretion; overexpressing CFTR offered no advantage compared with endogenous expression levels. However, recent discoveries focused attention on CFTR-mediated HCO3 (-) secretion and airway surface liquid (ASL) pH as critical for host defense and CF pathogenesis. Therefore, we generated porcine airway epithelia with varying ratios of CF and wild-type cells. Epithelia with a 50:50 mix secreted HCO3 (-) at half the rate of wild-type epithelia. Likewise, heterozygous epithelia (CFTR(+/-) or CFTR(+/∆F508)) expressed CFTR and secreted HCO3 (-) at ∼50% of wild-type values. ASL pH, antimicrobial activity, and viscosity showed similar relationships to the amount of CFTR. Overexpressing CFTR increased HCO3 (-) secretion to rates greater than wild type, but ASL pH did not exceed wild-type values. Thus, in contrast to Cl(-) secretion, the amount of CFTR is rate-limiting for HCO3 (-) secretion and for correcting host defense abnormalities. In addition, overexpressing CFTR might produce a greater benefit than expressing CFTR at wild-type levels when targeting small fractions of cells. These findings may also explain the risk of airway disease in CF carriers.


Subject(s)
Bicarbonates/immunology , Cystic Fibrosis Transmembrane Conductance Regulator/immunology , Cystic Fibrosis/immunology , Immunity, Innate/immunology , Respiratory Mucosa/immunology , Animals , Animals, Newborn , Cystic Fibrosis/therapy , Genetic Therapy , Stem Cell Transplantation , Swine
10.
Bioorg Med Chem Lett ; 26(6): 1503-1507, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26898335

ABSTRACT

Structure based design of a novel class of aminopyrimidine MTH1 (MutT homolog 1) inhibitors is described. Optimization led to identification of IACS-4759 (compound 5), a sub-nanomolar inhibitor of MTH1 with excellent cell permeability and good metabolic stability in microsomes. This compound robustly inhibited MTH1 activity in cells and proved to be an excellent tool for interrogation of the utility of MTH1 inhibition in the context of oncology.


Subject(s)
DNA Repair Enzymes/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Phosphoric Monoester Hydrolases/antagonists & inhibitors , DNA Repair Enzymes/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Models, Molecular , Molecular Structure , Phosphoric Monoester Hydrolases/metabolism , Structure-Activity Relationship , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...