Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 2: e561, 2014.
Article in English | MEDLINE | ID: mdl-25332844

ABSTRACT

Batch effects are responsible for the failure of promising genomic prognostic signatures, major ambiguities in published genomic results, and retractions of widely-publicized findings. Batch effect corrections have been developed to remove these artifacts, but they are designed to be used in population studies. But genomic technologies are beginning to be used in clinical applications where samples are analyzed one at a time for diagnostic, prognostic, and predictive applications. There are currently no batch correction methods that have been developed specifically for prediction. In this paper, we propose an new method called frozen surrogate variable analysis (fSVA) that borrows strength from a training set for individual sample batch correction. We show that fSVA improves prediction accuracy in simulations and in public genomic studies. fSVA is available as part of the sva Bioconductor package.

2.
Bioinformatics ; 30(19): 2757-63, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24907368

ABSTRACT

MOTIVATION: Sample source, procurement process and other technical variations introduce batch effects into genomics data. Algorithms to remove these artifacts enhance differences between known biological covariates, but also carry potential concern of removing intragroup biological heterogeneity and thus any personalized genomic signatures. As a result, accurate identification of novel subtypes from batch-corrected genomics data is challenging using standard algorithms designed to remove batch effects for class comparison analyses. Nor can batch effects be corrected reliably in future applications of genomics-based clinical tests, in which the biological groups are by definition unknown a priori. RESULTS: Therefore, we assess the extent to which various batch correction algorithms remove true biological heterogeneity. We also introduce an algorithm, permuted-SVA (pSVA), using a new statistical model that is blind to biological covariates to correct for technical artifacts while retaining biological heterogeneity in genomic data. This algorithm facilitated accurate subtype identification in head and neck cancer from gene expression data in both formalin-fixed and frozen samples. When applied to predict Human Papillomavirus (HPV) status, pSVA improved cross-study validation even if the sample batches were highly confounded with HPV status in the training set. AVAILABILITY AND IMPLEMENTATION: All analyses were performed using R version 2.15.0. The code and data used to generate the results of this manuscript is available from https://sourceforge.net/projects/psva.


Subject(s)
Algorithms , Genomics/methods , Head and Neck Neoplasms/genetics , Papillomavirus Infections/diagnosis , Artifacts , Computational Biology/methods , Head and Neck Neoplasms/virology , Humans , Models, Statistical , Reproducibility of Results , Software
3.
Stat Appl Genet Mol Biol ; 11(3): Article 10, 2012.
Article in English | MEDLINE | ID: mdl-22611599

ABSTRACT

Measurements from microarrays and other high-throughput technologies are susceptible to non-biological artifacts like batch effects. It is known that batch effects can alter or obscure the set of significant results and biological conclusions in high-throughput studies. Here we examine the impact of batch effects on predictors built from genomic technologies. To investigate batch effects, we collected publicly available gene expression measurements with known outcomes, and estimated batches using date. Using these data we show (1) the impact of batch effects on prediction depends on the correlation between outcome and batch in the training data, and (2) removing expression measurements most affected by batch before building predictors may improve the accuracy of those predictors. These results suggest that (1) training sets should be designed to minimize correlation between batches and outcome, and (2) methods for identifying batch-affected probes should be developed to improve prediction results for studies with high correlation between batches and outcome.


Subject(s)
Gene Expression Profiling/methods , Genomics , Models, Genetic , Algorithms , Computer Simulation , Reproducibility of Results
4.
Bioinformatics ; 28(6): 882-3, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-22257669

ABSTRACT

Heterogeneity and latent variables are now widely recognized as major sources of bias and variability in high-throughput experiments. The most well-known source of latent variation in genomic experiments are batch effects-when samples are processed on different days, in different groups or by different people. However, there are also a large number of other variables that may have a major impact on high-throughput measurements. Here we describe the sva package for identifying, estimating and removing unwanted sources of variation in high-throughput experiments. The sva package supports surrogate variable estimation with the sva function, direct adjustment for known batch effects with the ComBat function and adjustment for batch and latent variables in prediction problems with the fsva function.


Subject(s)
Software , Gene Expression Profiling , Genomics , High-Throughput Nucleotide Sequencing , Humans , Regression Analysis , Urinary Bladder Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...