Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37905077

ABSTRACT

Live-cell transcriptomic recording can help reveal hidden cellular states that precede phenotypic transformation. Here we demonstrate the use of protein-based encapsulation for preserving samples of cytoplasmic RNAs inside living cells. These molecular time capsules (MTCs) can be induced to create time-stamped transcriptome snapshots, preserve RNAs after cellular transitions, and enable retrospective investigations of gene expression programs that drive distinct developmental trajectories. MTCs also open the possibility to uncover transcriptomes in difficult-to-reach conditions.

2.
NAR Genom Bioinform ; 5(1): lqad017, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36879903

ABSTRACT

The ability to profile transcriptomes and characterize global gene expression changes has been greatly enabled by the development of RNA sequencing technologies (RNA-seq). However, the process of generating sequencing-compatible cDNA libraries from RNA samples can be time-consuming and expensive, especially for bacterial mRNAs which lack poly(A)-tails that are often used to streamline this process for eukaryotic samples. Compared to the increasing throughput and decreasing cost of sequencing, library preparation has had limited advances. Here, we describe bacterial-multiplexed-seq (BaM-seq), an approach that enables simple barcoding of many bacterial RNA samples that decreases the time and cost of library preparation. We also present targeted-bacterial-multiplexed-seq (TBaM-seq) that allows for differential expression analysis of specific gene panels with over 100-fold enrichment in read coverage. In addition, we introduce the concept of transcriptome redistribution based on TBaM-seq that dramatically reduces the required sequencing depth while still allowing for quantification of both highly and lowly abundant transcripts. These methods accurately measure gene expression changes with high technical reproducibility and agreement with gold standard, lower throughput approaches. Together, use of these library preparation protocols allows for fast, affordable generation of sequencing libraries.

3.
Science ; 362(6413)2018 10 26.
Article in English | MEDLINE | ID: mdl-30361340

ABSTRACT

The spatial organization of chromatin is pivotal for regulating genome functions. We report an imaging method for tracing chromatin organization with kilobase- and nanometer-scale resolution, unveiling chromatin conformation across topologically associating domains (TADs) in thousands of individual cells. Our imaging data revealed TAD-like structures with globular conformation and sharp domain boundaries in single cells. The boundaries varied from cell to cell, occurring with nonzero probabilities at all genomic positions but preferentially at CCCTC-binding factor (CTCF)- and cohesin-binding sites. Notably, cohesin depletion, which abolished TADs at the population-average level, did not diminish TAD-like structures in single cells but eliminated preferential domain boundary positions. Moreover, we observed widespread, cooperative, multiway chromatin interactions, which remained after cohesin depletion. These results provide critical insight into the mechanisms underlying chromatin domain and hub formation.


Subject(s)
Chromatin/chemistry , Single-Cell Analysis/methods , CCCTC-Binding Factor/chemistry , Cell Cycle Proteins/chemistry , Chromatin/ultrastructure , Chromosomal Proteins, Non-Histone/chemistry , Genome, Human , HCT116 Cells , Humans , In Situ Hybridization, Fluorescence , Protein Binding , Protein Domains , Cohesins
SELECTION OF CITATIONS
SEARCH DETAIL
...