Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38855965

ABSTRACT

Decades of studies have demonstrated links between biodiversity and ecosystem functioning, yet the generality of the relationships and the underlying mechanisms remain unclear, especially for forest ecosystems. Using 11 tree-diversity experiments, we tested tree species richness-community productivity relationships and the role of arbuscular (AM) or ectomycorrhizal (ECM) fungal-associated tree species in these relationships. Tree species richness had a positive effect on community productivity across experiments, modified by the diversity of tree mycorrhizal associations. In communities with both AM and ECM trees, species richness showed positive effects on community productivity, which could have resulted from complementarity between AM and ECM trees. Moreover, both AM and ECM trees were more productive in mixed communities with both AM and ECM trees than in communities assembled by their own mycorrhizal type of trees. In communities containing only ECM trees, species richness had a significant positive effect on productivity, whereas species richness did not show any significant effects on productivity in communities containing only AM trees. Our study provides novel explanations for variations in diversity-productivity relationships by suggesting that tree-mycorrhiza interactions can shape productivity in mixed-species forest ecosystems.

2.
Ecol Lett ; 27(5): e14427, 2024 May.
Article in English | MEDLINE | ID: mdl-38698677

ABSTRACT

Tree diversity can promote both predator abundance and diversity. However, whether this translates into increased predation and top-down control of herbivores across predator taxonomic groups and contrasting environmental conditions remains unresolved. We used a global network of tree diversity experiments (TreeDivNet) spread across three continents and three biomes to test the effects of tree species richness on predation across varying climatic conditions of temperature and precipitation. We recorded bird and arthropod predation attempts on plasticine caterpillars in monocultures and tree species mixtures. Both tree species richness and temperature increased predation by birds but not by arthropods. Furthermore, the effects of tree species richness on predation were consistent across the studied climatic gradient. Our findings provide evidence that tree diversity strengthens top-down control of insect herbivores by birds, underscoring the need to implement conservation strategies that safeguard tree diversity to sustain ecosystem services provided by natural enemies in forests.


Subject(s)
Arthropods , Biodiversity , Birds , Climate , Predatory Behavior , Trees , Animals , Arthropods/physiology , Birds/physiology , Food Chain , Larva/physiology
3.
Plant Soil ; 496(1-2): 485-504, 2024.
Article in English | MEDLINE | ID: mdl-38510944

ABSTRACT

Background and aims: Changes in water availability during the growing season are becoming more frequent due to climate change. Our study aimed to compare the fine-root acclimation capacity (plasticity) of six temperate tree species aged six years and exposed to high or low growing season soil water availability over five years. Methods: Root samples were collected from the five upper strata of mineral soil to a total soil depth of 30 cm in monoculture plots of Acer saccharum Marsh., Betula papyrifera Marsh., Larix laricina K. Koch, Pinus strobus L., Picea glauca (Moench) Voss and Quercus rubra L. established at the International Diversity Experiment Network with Trees (IDENT) field experiment in Sault Ste. Marie, Ontario, Canada. Four replicates of each monoculture were subjected to high or low water availability treatments. Results: Absorptive fine root density increased by 67% for Larix laricina, and 90% for Picea glauca, under the high-water availability treatment at 0-5 cm soil depth. The two late successional, slower growing tree species, Acer saccharum and Picea glauca, showed higher plasticity in absorptive fine root biomass in the upper 5 cm of soil (PIv = 0.36 & 0.54 respectively), and lower plasticity in fine root depth over the entire 30 cm soil profile compared to the early successional, faster growing tree species Betula papyrifera and Larix laricina. Conclusion: Temperate tree species show contrasting acclimation responses in absorptive fine root biomass and rooting depth to differences in water availability. Some of these responses vary with tree species successional status and seem to benefit both early and late successional tree species. Supplementary Information: The online version contains supplementary material available at 10.1007/s11104-023-06377-w.

4.
Nat Commun ; 15(1): 2078, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453933

ABSTRACT

Plant diversity effects on community productivity often increase over time. Whether the strengthening of diversity effects is caused by temporal shifts in species-level overyielding (i.e., higher species-level productivity in diverse communities compared with monocultures) remains unclear. Here, using data from 65 grassland and forest biodiversity experiments, we show that the temporal strength of diversity effects at the community scale is underpinned by temporal changes in the species that yield. These temporal trends of species-level overyielding are shaped by plant ecological strategies, which can be quantitatively delimited by functional traits. In grasslands, the temporal strengthening of biodiversity effects on community productivity was associated with increasing biomass overyielding of resource-conservative species increasing over time, and with overyielding of species characterized by fast resource acquisition either decreasing or increasing. In forests, temporal trends in species overyielding differ when considering above- versus belowground resource acquisition strategies. Overyielding in stem growth decreased for species with high light capture capacity but increased for those with high soil resource acquisition capacity. Our results imply that a diversity of species with different, and potentially complementary, ecological strategies is beneficial for maintaining community productivity over time in both grassland and forest ecosystems.


Subject(s)
Biodiversity , Ecosystem , Plants , Biomass , Forests , Grassland
5.
Ecol Evol ; 4(12): 2360-74, 2014 Jun.
Article in English | MEDLINE | ID: mdl-25360273

ABSTRACT

Intraspecific assisted migration (ISAM) through seed transfer during artificial forest regeneration has been suggested as an adaptation strategy to enhance forest resilience and productivity under future climate. In this study, we assessed the risks and benefits of ISAM in white spruce based on long-term and multilocation, rangewide provenance test data. Our results indicate that the adaptive capacity and growth potential of white spruce varied considerably among 245 range-wide provenances sampled across North America; however, the results revealed that local populations could be outperformed by nonlocal ones. Provenances originating from south-central Ontario and southwestern Québec, Canada, close to the southern edge of the species' natural distribution, demonstrated superior growth in more northerly environments compared with local populations and performed much better than populations from western Canada and Alaska, United States. During the 19-28 years between planting and measurement, the southern provenances have not been more susceptible to freezing damage compared with local populations, indicating they have the potential to be used now for the reforestation of more northerly planting sites; based on changing temperature, these seed sources potentially could maintain or increase white spruce productivity at or above historical levels at northern sites. A universal response function (URF), which uses climatic variables to predict provenance performance across field trials, indicated a relatively weak relationship between provenance performance and the climate at provenance origin. Consequently, the URF from this study did not provide information useful to ISAM. The ecological and economic importance of conserving white spruce genetic resources in south-central Ontario and southwestern Québec for use in ISAM is discussed.

6.
J Appl Stat ; 41(9): 2028-2043, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-24910489

ABSTRACT

Van Valen's Red Queen hypothesis states that within a homogeneous taxonomic group the age is statistically independent of the rate of extinction. The case of the Red Queen hypothesis being addressed here is when the homogeneous taxonomic group is a group of similar species. Since Van Valen's work, various statistical approaches have been used to address the relationship between taxon age and the rate of extinction. We propose a general class of test statistics that can be used to test for the effect of age on the rate of extinction. These test statistics allow for a varying background rate of extinction and attempt to remove the effects of other covariates when assessing the effect of age on extinction. No model is assumed for the covariate effects. Instead we control for covariate effects by pairing or grouping together similar species. Simulations are used to compare the power of the statistics. We apply the test statistics to data on Foram extinctions and find that age has a positive effect on the rate of extinction. A derivation of the null distribution of one of the test statistics is provided in the supplementary material.

7.
Tree Physiol ; 28(5): 797-804, 2008 May.
Article in English | MEDLINE | ID: mdl-18316311

ABSTRACT

A field experiment was established in a second-growth hardwood forest dominated by red oak (Quercus rubra L.) to examine the effects of shelterwood overstory density on leaf gas exchange and seedling water status of planted red oak, naturally regenerated red oak and sugar maple (Acer saccharum Marsh.) seedlings during the first growing season following harvest. Canopy cover of uncut control stands and moderate and light shelterwoods averaged 97, 80 and 49%, respectively. Understory light and vapor pressure deficit (VPD) strongly influenced gas exchange responses to overstory reduction. Increased irradiance beneath the shelterwoods significantly increased net photosynthesis (P(n)) and leaf conductance to water vapor (G(wv)) of red oak and maple seedlings; however, P(n) and G(wv) of planted and naturally regenerated red oak seedlings were two to three times higher than those of sugar maple seedlings in both partial harvest treatments, due in large part to decreased stomatal limitation of gas exchange in red oak as a result of increased VPD in the shelterwoods. In both species, seedling water status was higher in the partial harvest treatments, as reflected by the higher predawn leaf water potential and seedling water-use efficiency in seedlings in shelterwoods than in uncut stands. Within a treatment, planted and natural red oak seedlings exhibited similar leaf gas exchange rates and water status, indicating little adverse physiological effect of transplanting. We conclude that the use of shelterwoods favors photosynthetic potential of red oak over sugar maple, and should improve red oak regeneration in Ontario.


Subject(s)
Acer/growth & development , Ecosystem , Quercus/growth & development , Seedlings/growth & development , Acer/metabolism , Carbon Dioxide/metabolism , Ontario , Photosynthesis/physiology , Population Density , Quercus/metabolism , Seedlings/metabolism , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...