Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Dairy Sci ; 106(12): 9078-9094, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37678762

ABSTRACT

Residual feed intake is viewed as an important trait in breeding programs that could be used to enhance genetic progress in feed efficiency. In particular, improving feed efficiency could improve both economic and environmental sustainability in the dairy cattle industry. However, data remain sparse, limiting the development of reliable genomic evaluations across lactation and parity for residual feed intake. Here, we estimated novel genetic parameters for genetic residual feed intake (gRFI) across the first, second, and third parity, using a random regression model. Research data on the measured feed intake, milk production, and body weight of 7,379 cows (271,080 records) from 6 countries in 2 continents were shared through the Horizon 2020 project Genomic Management Tools to Optimise Resilience and Efficiency, and the Resilient Dairy Genome Project. The countries included Canada (1,053 cows with 47,130 weekly records), Denmark (1,045 cows with 72,760 weekly records), France (329 cows with 16,888 weekly records), Germany (938 cows with 32,614 weekly records), the Netherlands (2,051 cows with 57,830 weekly records), and United States (1,963 cows with 43,858 weekly records). Each trait had variance components estimated from first to third parity, using a random regression model across countries. Genetic residual feed intake was found to be heritable in all 3 parities, with first parity being predominant (range: 22-34%). Genetic residual feed intake was highly correlated across parities for mid- to late lactation; however, genetic correlation across parities was lower during early lactation, especially when comparing first and third parity. We estimated a genetic correlation of 0.77 ± 0.37 between North America and Europe for dry matter intake at first parity. Published literature on genetic correlations between high input countries/continents for dry matter intake support a high genetic correlation for dry matter intake. In conclusion, our results demonstrate the feasibility of estimating variance components for gRFI across parities, and the value of sharing data on scarce phenotypes across countries. These results can potentially be implemented in genetic evaluations for gRFI in dairy cattle.


Subject(s)
Lactation , Milk , Pregnancy , Female , Cattle/genetics , Animals , Parity , Time Factors , Lactation/genetics , Eating/genetics , Europe , North America , Animal Feed/analysis
2.
J Dairy Sci ; 105(7): 5954-5971, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35636997

ABSTRACT

Residual feed intake (RFI) and feed saved (FS) are important feed efficiency traits that have been increasingly considered in genetic improvement programs. Future sustainability of these genetic evaluations will depend upon greater flexibility to accommodate sparsely recorded dry matter intake (DMI) records on many more cows, especially from commercial environments. Recent multiple-trait random regression (MTRR) modeling developments have facilitated days in milk (DIM)-specific inferences on RFI and FS, particularly in modeling the effect of change in metabolic body weight (MBW). The MTRR analyses, using daily data on the core traits of DMI, MBW, and milk energy (MilkE), were conducted separately for 2,532 primiparous and 2,379 multiparous US Holstein cows from 50 to 200 DIM. Estimated MTRR variance components were used to derive genetic RFI and FS and DIM-specific genetic partial regressions of DMI on MBW, MilkE, and change in MBW. Estimated daily heritabilities of RFI and FS varied across lactation for both primiparous (0.05-0.07 and 0.11-0.17, respectively) and multiparous (0.03-0.13 and 0.10-0.17, respectively) cows. Genetic correlations of RFI across DIM varied (>0.05) widely compared with FS (>0.54) within either parity class. Heritability estimates based on average lactation-wise measures were substantially larger than daily heritabilities, ranging from 0.17 to 0.25 for RFI and from 0.35 to 0.41 for FS. The partial genetic regression coefficients of DMI on MBW (0.11 to 0.16 kg/kg0.75 for primiparous and 0.12 to 0.14 kg/kg0.75 for multiparous cows) and of DMI on MilkE (0.45 to 0.68 kg/Mcal for primiparous and 0.36 to 0.61 kg/Mcal for multiparous cows) also varied across lactation. In spite of the computational challenges encountered with MTRR, the model potentially facilitates an efficient strategy for harnessing more data involving a wide variety of data recording scenarios for genetic evaluations on feed efficiency.


Subject(s)
Lactation , Milk , Animal Feed/analysis , Animals , Body Weight/genetics , Cattle/genetics , Eating/genetics , Female , Lactation/genetics , Milk/metabolism , Phenotype , Pregnancy
3.
J Dairy Sci ; 103(6): 5354-5365, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32331897

ABSTRACT

The rate at which new traits are being developed is increasing, leading to an expanding number of evaluations provided to dairy producers, especially for functional traits. This review will discuss the development and implementation of genetic evaluations for direct health traits in the United States, as well as potential future developments. Beginning in April 2018, routine official genomic evaluations for 6 direct health traits in Holsteins were made available to US producers from the Council on Dairy Cattle Breeding (Bowie, MD). Traits include resistance to milk fever, displaced abomasum, ketosis, clinical mastitis, metritis, and retained placenta. These health traits were included in net merit indices beginning in August 2018, with a total weight of approximately 2%. Previously, improvement of cow health was primarily made through changes to management practices or genetic selection on indicator traits, such as somatic cell score, productive life, or livability. Widespread genomic testing now allows for accelerated improvement of traits with low heritabilities such as health; however, phenotypes remain essential to the success of genomic evaluations. Establishment and maintenance of data pipelines is a critical component of health trait evaluations, as well as appropriate data quality control standards. Data standardization is a necessary process when multiple data sources are involved. Model refinement continues, including implementation of variance adjustments beginning with the April 2019 evaluation. Mastitis evaluations are submitted to Interbull along with somatic cell score for international validation and evaluation of udder health. Additional areas of research include evaluation of other breeds for direct health traits, use of multiple-trait models, and evaluations for additional functional traits such as calf health and feed efficiency. Future developments will require new and continued cooperation among numerous industry stakeholders. There is more information available than ever before with which to make better selection decisions; however, this also makes it increasingly important to provide accurate and unbiased information.


Subject(s)
Breeding , Cattle Diseases/genetics , Cattle/genetics , Dairying , Health Status , Animals , Body Weight/genetics , Female , Genomics , Ketosis/veterinary , Mammary Glands, Animal , Phenotype , Placenta, Retained/veterinary , Pregnancy , Stomach Diseases/veterinary , United States
4.
J Dairy Sci ; 101(1): 413-424, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29128227

ABSTRACT

Ketosis is one of the most frequently reported metabolic health events in dairy herds. Several genetic analyses of ketosis in dairy cattle have been conducted; however, few have focused specifically on Jersey cattle. The objectives of this research included estimating variance components for susceptibility to ketosis and identification of genomic regions associated with ketosis in Jersey cattle. Voluntary producer-recorded health event data related to ketosis were available from Dairy Records Management Systems (Raleigh, NC). Standardization was implemented to account for the various acronyms used by producers to designate an incidence of ketosis. Events were restricted to the first reported incidence within 60 d after calving in first through fifth parities. After editing, there were a total of 42,233 records from 23,865 cows. A total of 1,750 genotyped animals were used for genomic analyses using 60,671 markers. Because of the binary nature of the trait, a threshold animal model was fitted using THRGIBBS1F90 (version 2.110) using only pedigree information, and genomic information was incorporated using a single-step genomic BLUP approach. Individual single nucleotide polymorphism (SNP) effects and the proportion of variance explained by 10-SNP windows were calculated using postGSf90 (version 1.38). Heritability of susceptibility to ketosis was 0.083 [standard deviation (SD) = 0.021] and 0.078 (SD = 0.018) in pedigree-based and genomic analyses, respectively. The marker with the largest associated effect was located on chromosome 10 at 66.3 Mbp. The 10-SNP window explaining the largest proportion of variance (0.70%) was located on chromosome 6 beginning at 56.1 Mbp. Gene Ontology (GO) and Medical Subject Heading (MeSH) enrichment analyses identified several overrepresented processes and terms related to immune function. Our results indicate that there is a genetic component related to ketosis susceptibility in Jersey cattle and, as such, genetic selection for improved resistance to ketosis is feasible.


Subject(s)
Cattle Diseases/genetics , Genome-Wide Association Study/veterinary , Genome/genetics , Ketosis/veterinary , Polymorphism, Single Nucleotide/genetics , Animals , Cattle , Female , Genomics , Pedigree , Phenotype , Selection, Genetic
5.
J Dairy Sci ; 100(4): 2877-2891, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28131573

ABSTRACT

The objectives of this study were to estimate variance components and identify regions of the genome associated with traits related to embryo transfer in Holsteins. Reproductive technologies are used in the dairy industry to increase the reproductive rate of superior females. A drawback of these methods remains the variability of animal responses to the procedures. If some variability can be explained genetically, selection can be used to improve animal response. Data collected from a Holstein dairy farm in Florida from 2008 to 2015 included 926 superovulation records (number of structures recovered and number of good embryos), 628 in vitro fertilization records (number of oocytes collected, number of cleaved embryos, number of high- and low-quality embryos, and number of transferrable embryos), and 12,089 embryo transfer records (pregnancy success). Two methods of transformation (logarithmic and Anscombe) were applied to count variables and results were compared. Univariate animal models were fitted for each trait with the exception of pregnancy success after embryo transfer. Due to the binary nature of the latter trait, a threshold liability model was fitted that accounted for the genetic effect of both the recipient and the embryo. Both transformation methods produced similar results. Single-step genomic BLUP analyses were performed and SNP effects estimated for traits with a significant genetic component. Heritability of number of structures recovered and number of good embryos when log-transformed were 0.27 ± 0.08 and 0.15 ± 0.07, respectively. Heritability estimates from the in vitro fertilization data ranged from 0.01 ± 0.08 to 0.21 ± 0.15, but were not significantly different from zero. Recipient and embryo heritability (standard deviation) of pregnancy success after embryo transfer was 0.03 (0.01) and 0.02 (0.01), respectively. The 10-SNP window explaining the largest proportion of variance (0.37%) for total structures collected was located on chromosome 8 beginning at 55,663,248 bp. Similar regions were identified for number of good embryos, with the largest proportion of variance (0.43%) explained by a 10-SNP window on chromosome 14 beginning at 26,713,734 bp. Results indicate that there is a genetic component for some traits related to superovulation and that selection should be possible. Moreover, the genetic component for superovulation traits involves some genomic regions that are similar to those for other fertility traits currently evaluated.


Subject(s)
Embryo Transfer/veterinary , Superovulation , Animals , Cattle , Female , Fertilization in Vitro/veterinary , Oocytes , Reproduction
6.
J Dairy Sci ; 100(3): 2042-2056, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28109596

ABSTRACT

Genotype by environment interaction (G × E) in dairy cattle productive traits has been shown to exist, but current genetic evaluation methods do not take this component into account. As several environmental descriptors (e.g., climate, farming system) are known to vary within the United States, not accounting for the G × E could lead to reranking of bulls and loss in genetic gain. Using test-day records on milk yield, somatic cell score, fat, and protein percentage from all over the United States, we computed within herd-year-season daughter yield deviations for 1,087 Holstein bulls and regressed them on genetic and environmental information to estimate variance components and to assess prediction accuracy. Genomic information was obtained from a 50k SNP marker panel. Environmental effect inputs included herd (160 levels), geographical region (7 levels), geographical location (2 variables), climate information (7 variables), and management conditions of the herds (16 total variables divided in 4 subgroups). For each set of environmental descriptors, environmental, genomic, and G × E components were sequentially fitted. Variance components estimates confirmed the presence of G × E on milk yield, with its effect being larger than main genetic effect and the environmental effect for some models. Conversely, G × E was moderate for somatic cell score and small for milk composition. Genotype by environment interaction, when included, partially eroded the genomic effect (as compared with the models where G × E was not included), suggesting that the genomic variance could at least in part be attributed to G × E not appropriately accounted for. Model predictive ability was assessed using 3 cross-validation schemes (new bulls, incomplete progeny test, and new environmental conditions), and performance was compared with a reference model including only the main genomic effect. In each scenario, at least 1 of the models including G × E was able to perform better than the reference model, although it was not possible to find the overall best-performing model that included the same set of environmental descriptors. In general, the methodology used is promising in accounting for G × E in genomic predictions, but challenges exist in identifying a unique set of covariates capable of describing the entire variety of environments.


Subject(s)
Cattle/genetics , Gene-Environment Interaction , Animals , Breeding , Climate , Environment , Female , Genome , Genomics , Genotype , Lactation/genetics , Male , Milk/metabolism , Phenotype
7.
J Dairy Sci ; 99(9): 6855-6873, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27372587

ABSTRACT

Metabolic disorders are disturbances to one or more of the metabolic processes in dairy cattle. Dysfunction of any of these processes is associated with the manifestation of metabolic diseases or disorders. In this review, data recording, incidences, genetic parameters, predictors, and status of genetic evaluations were examined for (1) ketosis, (2) displaced abomasum, (3) milk fever, and (4) tetany, as these are the most prevalent metabolic diseases where published genetic parameters are available. The reported incidences of clinical cases of metabolic disorders are generally low (less than 10% of cows are recorded as having a metabolic disease per herd per year or parity/lactation). Heritability estimates are also low and are typically less than 5%. Genetic correlations between metabolic traits are mainly positive, indicating that selection to improve one of these diseases is likely to have a positive effect on the others. Furthermore, there may also be opportunities to select for general disease resistance in terms of metabolic stability. Although there is inconsistency in published genetic correlation estimates between milk yield and metabolic traits, selection for milk yield may be expected to lead to a deterioration in metabolic disorders. Under-recording and difficulty in diagnosing subclinical cases are among the reasons why interest is growing in using easily measurable predictors of metabolic diseases, either recorded on-farm by using sensors and milk tests or off-farm using data collected from routine milk recording. Some countries have already initiated genetic evaluations of metabolic disease traits and currently most of these use clinical observations of disease. However, there are opportunities to use clinical diseases in addition to predictor traits and genomic information to strengthen genetic evaluations for metabolic health in the future.


Subject(s)
Breeding , Cattle Diseases/epidemiology , Cattle Diseases/genetics , Metabolic Diseases/veterinary , Parturient Paresis/epidemiology , Animals , Cattle , Female , Incidence , Ketosis/epidemiology , Ketosis/genetics , Ketosis/veterinary , Lactation , Metabolic Diseases/epidemiology , Metabolic Diseases/genetics , Milk/metabolism , Parity , Parturient Paresis/genetics , Pregnancy
8.
J Dairy Sci ; 99(8): 6420-6435, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27209127

ABSTRACT

The objective of this study was to identify single nucleotide polymorphisms and gene networks associated with 3 fertility traits in dairy cattle-daughter pregnancy rate, heifer conception rate, and cow conception rate-using different approaches. Deregressed predicted transmitting abilities were available for approximately 24,000 Holstein bulls and 36,000 Holstein cows sampled from the National Dairy Database with high-density genotypes. Of those, 1,732 bulls and 375 cows had been genotyped with the Illumina BovineHD Genotyping BeadChip (Illumina Inc., San Diego, CA). The remaining animals were genotyped with various chips of lower density that were imputed to high density. Univariate and trivariate genome-wide association studies (GWAS) with both medium- (60,671 markers) and high-density (312,614 markers) panels were performed for daughter pregnancy rate, heifer conception rate, and cow conception rate using GEMMA (version 0.94; http://www.xzlab.org/software.html). Analyses were conducted using bulls only, cows only, and a sample of both bulls and cows. The partial correlation and information theory algorithm was used to develop gene interaction networks. The most significant markers were further investigated to identify putatively associated genes. Little overlap in associated genes could be found between GWAS using different reference populations of bulls only, cows only, and combined bulls and cows. The partial correlation and information theory algorithm was able to identify several genes that were not identified by ordinary GWAS. The results obtained herein will aid in further dissecting the complex biology underlying fertility traits in dairy cattle, while also providing insight into the nuances of GWAS.


Subject(s)
Fertility/genetics , Genome-Wide Association Study , Genotype , Animals , Cattle , Female , Male , Phenotype , Polymorphism, Single Nucleotide
9.
J Dairy Sci ; 99(2): 1298-1314, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26709189

ABSTRACT

Genetic improvement of dairy cattle health through the use of producer-recorded data has been determined to be feasible. Low estimated heritabilities indicate that genetic progress will be slow. Variation observed in lowly heritable traits can largely be attributed to nongenetic factors, such as the environment. More rapid improvement of dairy cattle health may be attainable if herd health programs incorporate environmental and managerial aspects. More than 1,100 herd characteristics are regularly recorded on farm test-days. We combined these data with producer-recorded health event data, and parametric and nonparametric models were used to benchmark herd and cow health status. Health events were grouped into 3 categories for analyses: mastitis, reproductive, and metabolic. Both herd incidence and individual incidence were used as dependent variables. Models implemented included stepwise logistic regression, support vector machines, and random forests. At both the herd and individual levels, random forest models attained the highest accuracy for predicting health status in all health event categories when evaluated with 10-fold cross-validation. Accuracy (SD) ranged from 0.61 (0.04) to 0.63 (0.04) when using random forest models at the herd level. Accuracy of prediction (SD) at the individual cow level ranged from 0.87 (0.06) to 0.93 (0.001) with random forest models. Highly significant variables and key words from logistic regression and random forest models were also investigated. All models identified several of the same key factors for each health event category, including movement out of the herd, size of the herd, and weather-related variables. We concluded that benchmarking health status using routinely collected herd data is feasible. Nonparametric models were better suited to handle this complex data with numerous variables. These data mining techniques were able to perform prediction of health status and could add evidence to personal experience in herd management.


Subject(s)
Benchmarking , Cattle/physiology , Dairying/methods , Health Status , Animals , Cattle Diseases/epidemiology , Environment , Female , Logistic Models , Reproduction
10.
J Dairy Sci ; 97(5): 3190-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24612803

ABSTRACT

Emphasizing increased profit through increased dairy cow production has revealed a negative relationship of production with fitness and health traits. Decreased cow health can affect herd profitability through increased rates of involuntary culling and decreased or lost milk sales. The development of genomic selection methodologies, with accompanying substantial gains in reliability for low-heritability traits, may dramatically improve the feasibility of genetic improvement of dairy cow health. Producer-recorded health information may provide a wealth of information for improvement of dairy cow health, thus improving profitability. The principal objective of this study was to use health data collected from on-farm computer systems in the United States to estimate variance components and heritability for health traits commonly experienced by dairy cows. A single-step analysis was conducted to estimate genomic variance components and heritabilities for health events, including cystic ovaries, displaced abomasum, ketosis, lameness, mastitis, metritis, and retained placenta. A blended H matrix was constructed for a threshold model with fixed effects of parity and year-season and random effects of herd-year and sire. The single-step genomic analysis produced heritability estimates that ranged from 0.02 (standard deviation = 0.005) for lameness to 0.36 (standard deviation = 0.08) for retained placenta. Significant genetic correlations were found between lameness and cystic ovaries, displaced abomasum and ketosis, displaced abomasum and metritis, and retained placenta and metritis. Sire reliabilities increased, on average, approximately 30% with the incorporation of genomic data. From the results of these analyses, it was concluded that genetic selection for health traits using producer-recorded data are feasible in the United States, and that the inclusion of genomic data substantially improves reliabilities for these traits.


Subject(s)
Cattle Diseases/genetics , Dairying , Selection, Genetic/genetics , Animals , Breeding , Cattle/genetics , Dairying/economics , Endometritis/veterinary , Female , Genomics , Ketosis/veterinary , Lameness, Animal/genetics , Mastitis, Bovine/genetics , Milk , Parity , Pedigree , Phenotype , Placenta, Retained/veterinary , Pregnancy , Quantitative Trait, Heritable , Reproducibility of Results , United States
11.
J Dairy Sci ; 95(9): 5422-5435, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22916949

ABSTRACT

The principal objective of this study was to analyze the plausibility of health data recorded through on-farm recording systems throughout the United States. Substantial progress has been made in the genetic improvement of production traits while health and fitness traits of dairy cattle have declined. Health traits are generally expensive and difficult to measure, but health event data collected from on-farm computer management systems may provide an effective and low-cost source of health information. To validate editing methods, incidence rates of on-farm recorded health event data were compared with incidence rates reported in the literature. Putative relationships among common health events were examined using logistic regression for each of 3 timeframes: 0 to 60, 61 to 90, and 91 to 150 d in milk. Health events occurring on average before the health event of interest were included in each model as predictors when significant. Calculated incidence rates ranged from 1.37% for respiratory problems to 12.32% for mastitis. Most health events reported had incidence rates lower than the average incidence rate found in the literature. This may partially represent underreporting by dairy farmers who record disease events only when a treatment or other intervention is required. Path diagrams developed using odds ratios calculated from logistic regression models for each of 13 common health events allowed putative relationships to be examined. The greatest odds ratios were estimated to be the influence of ketosis on displaced abomasum (15.5) and the influence of retained placenta on metritis (8.37), and were consistent with earlier reports. The results of this analysis provide evidence for the plausibility of on-farm recorded health information.


Subject(s)
Cattle Diseases/epidemiology , Dairying/methods , Records , Animals , Cattle , Incidence , Phenotype , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...